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Abstract 

Attention generally enhances both visual performance and subjective appearance. Yet, at 

matched performance, unattended items can appear more visible than attended ones, a 

phenomenon called “subjective inflation.” Inflation, however, has only been narrowly tested near 

detection thresholds, making it unclear whether attention regularly dissociates objective and 

subjective aspects of perception with broad implications for everyday vision—where attention is 

usually unevenly distributed—and for studies of consciousness. Here, in four experiments, we 

tested inattentional inflation over varied stimulus and task conditions, spanning threshold to 

suprathreshold regimes. Using a new analytic approach to relate objective and subjective 

reports over full psychometric functions, we measured subjective inflation over wide ranges of 

matched performance. In all experiments, inattention inflated subjective stimulus visibility. But 

when subjective reports specified visibility of the task-relevant feature, we only found evidence 

for inflation at threshold. Thus, what we think we see may regularly dissociate from what we can 

visually discriminate.  
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Introduction 

We generally think that when we attend to something, we will see it better. Indeed, attention 

enhances basic aspects of vision, including contrast sensitivity1–5 and spatial resolution6–8, to 

benefit performance on many tasks. Attention also enhances subjective appearance9, making 

attended items look stronger10–15, sharper16,17, and more perceptually organized18 than 

unattended ones. However, it has been reported that the effects of attention on objective and 

subjective aspects of perception do not proceed in lockstep19,20. Rather, at matched levels of 

task performance, unattended items can appear more visible than attended ones21,22.  

Subjective inflation—the idea that our phenomenal experience can be stronger, sharper, more 

vivid, or otherwise “inflated” above what task accuracy would suggest23–27—has been suggested 

to explain the apparent richness of the unattended periphery28–30, in spite of its poorer sensory 

processing31. Subjective inflation also suggests that unique mechanisms may underlie objective 

vs. subjective aspects of perception, and this dissociation has been taken by some as evidence 

supporting “higher-order” theories of conscious perception. This class of theories proposes that 

subjective experience arises from downstream metacognitive representations30,32–37, which can 

misrepresent the early-stage sensory processes governing visual performance. Against this 

view—and forming an enduring divide in theories of conscious perception38,39—first-order 

theories assert that sensory signals themselves are sufficient for subjective experience40–42.  

Despite its theoretical implications, empirical evidence for subjective inflation is limited. While 

there are reports of subjective inflation for unattended (vs. attended locations)21,22, as well as for 

peripheral (vs. central) vision23 and crowded (vs. singleton) conditions43, these tests have been 

conducted near detection thresholds and typically at only one or two matched levels of 

performance. Compelling evidence of subjective inflation specific to inattention (“inattentional 

inflation”) primarily comes from one study21. Others are partial, conceptual replications28. And 

yet some other studies have found only weak evidence22 or even counter-evidence44, leaving it 

unclear whether attention regularly dissociates objective and subjective aspects of perception in 

a way that could matter for everyday vision, where attention tends to be unevenly cast over 

clearly visible scenes.  

The narrow scope of prior tests of subjective inflation was imposed in part by methodological 

constraints. One strategy to match performance across conditions of comparison is to physically 

titrate a single pair of stimuli. For example, in tests of inattentional inflation, the stimulus was 

made physically stronger in the unattended condition and weaker in the attended condition21,22 

with the goal of equating stimulus processing across different levels of attention. However, this 

approach isolates measurements of inflation to a single performance level, one that may be 

suboptimal for revealing effects of inflation, and relies on statistical null effects to assume 

performance equivalence across conditions, such that what looked like inflation may have 

instead reflected small, non-significant performance differences45,46. It is unclear, then, whether 

the inconsistency in prior tests of inattentional inflation is a consequence of methodological 

limitations or the fragility of the phenomenon.  

To justify subjective inflation as an explanation for the apparent richness of perception across 

the visual field and as a motivating pillar for higher-order theories of conscious perception34–36, it 

should withstand several key tests. First, subjective inflation should be tested beyond the visual 

detection of faint stimuli to understand whether inflation could underpin everyday, 

suprathreshold visual experience. Second, most demonstrations of inflation use grating 
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stimuli21,23,26, leaving it unclear the extent to which inflation generalizes to the perception of 

visual properties beyond low-level contrast sensitivity. Third, studies of inflation have not asked 

participants about the visibility of the particular visual feature that governs objective 

performance (the “task-relevant feature”), leaving open the possibility that previous findings of 

inflation were driven by objective and subjective reports accessing different stimulus information 

because the subjective task was underspecified.  

Here in four experiments (total n=120), conceived of in an adversarial collaboration47 including 

first- and higher-order theorists and led by theory-neutral laboratories, we tested the robustness 

of inattentional inflation over a large range of stimulus and task conditions in a high-powered 

experimental design (see Supplementary Note 1 for further details on the adversarial 

collaboration). We manipulated covert spatial attention using a central precue and measured its 

effects on the objective discrimination and subjective perception of peripheral stimuli. Across 

experiments, the stimuli were of different types (gratings and texture-defined figure-ground 

stimuli) and strengths, spanning threshold to suprathreshold regimes. We used gratings to 

facilitate comparison to previous tests of subjective inflation and figure-ground stimuli, which tap 

into the mid-level visual process of texture segmentation6,48, to test the phenomenon’s 

generalizability. To index subjective strength in suprathreshold regimes, in which detection 

measures would not be revealing, we created a comparative visibility task that asked 

participants to judge the apparent strength of a target relative to a learned reference. The 

subjective measures probed visibility of the task-relevant feature in addition to visibility of the 

overall stimulus. To measure subjective inflation over full psychometric functions, we used a 

new analytic approach46,49 to quantify subjective reports over common ranges of performance, 

circumventing statistical and practical pitfalls in matching performance using single stimulus 

pairs.  

In all experiments, we found strong and consistent inattentional inflation of the overall stimulus: 

withdrawing attention impaired the objective discrimination of visual features more than it 

reduced reports of apparent stimulus strength. Inflation of the stimulus not only extended 

beyond threshold regimes, but was more pronounced in suprathreshold regimes. However, 

when subjective reports specified the task-relevant feature, inflation was only found in threshold 

regimes. All effects of inattentional inflation were simultaneously replicated at two experimental 

sites and using two independent analytic pipelines. The results show that attention decouples 

objective and subjective reports in many, but not all, contexts. Peculiarly, when attention is 

withdrawn, we report seeing more than visual performance would suggest.  

Results 

Preregistration and simultaneous replication 

All four experiments, including their methods, planned primary analyses, and theory  

predictions, were preregistered on Open Science Framework (preregistration document50: 

https://osf.io/p3erc; detailed documents: https://osf.io/yur93/). For simultaneous replication, all 

experiments and analyses were conducted in parallel at two experimental sites. We refrained 

from sharing data between sites and performing the critical analyses for theory predictions (i.e., 

quantifying subjective reports as a function of objective performance across varying levels of 

attention) until both sites completed data collection for an experiment. All main results were 

consistent across both sites and were confirmed using two independent analysis pipelines. For 

https://osf.io/p3erc
https://osf.io/yur93/
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simplicity, we report the combined data across sites in the main text, with additional site-specific 

details provided in the Supplementary Material. 

Task protocol 

In four experiments, human participants (n=30 per experiment with ~3000 trials per participant) 

performed a spatial attentional cueing task (Figure 1, Supplementary Figure 1). On each trial, 

participants viewed up to four peripheral targets, which independently varied across 7 strengths, 

defined separately for two stimulus types. Targets were either contrast-defined gratings in noise 

(Experiments 1 and 2) or texture-defined figure-ground ovals, with textures composed of line 

elements (Experiments 3 and 4). Targets were parametrically manipulated in strength—via 

grating contrast or texture line length—to span near-threshold (Experiments 1 and 3) to 

suprathreshold (Experiments 2 and 4) regimes (Figure 1b). Stimulus strengths were titrated per 

participant to be near detection thresholds (see Methods, Thresholding) or fixed across 

participants to be at suprathreshold values (see Methods, Stimuli). To further increase the 

grating visibility in the suprathreshold experiments, the noise contrast was decreased from 50% 

to 20%. The 2x2 design of stimulus type and strength regime, along with presenting 7 levels of 

stimulus strength within each experiment, equipped us to test for subjective inflation across 

broad stimulus conditions.  

Before the targets appeared, a central precue directed covert attention to one or all target 

locations while central fixation was monitored (Figure 1a). After the targets disappeared, a 

response cue indicated which single peripheral location to report. On most trials (60%), the 

response cue and precue matched (“valid” condition), so participants had incentive to direct 

attention to the precued location. On some trials (20%), the precue misdirected attention to a 

location the participant did not have to report (“invalid” condition). When the precue was 

spatially uninformative (20% of trials, “neutral” condition), participants were asked to distribute 

attention across all possible target locations. 

Participants supplied simultaneously 1) an objective orientation report and 2) a subjective 

visibility report about the response-cued quadrant (Figure 1c). The objective report was to 

discriminate the target orientation (i.e., “Was the grating tilted counterclockwise or clockwise 

from vertical?” or “Was the oval figure oriented vertically or horizontally along its major axis?”). 

In the threshold experiments, the gratings were orthogonally oriented (±45°) and figure-ground 

ovals clearly elongated (5° by 3° aspect ratio), so that the difficulty of orientation discrimination 

was driven largely by target detectability. In the suprathreshold experiments, a stimulus feature 

(the grating tilt or oval aspect ratio) was titrated per participant to ensure orientation 

discrimination remained challenging even when the target was easily detectable.  

The subjective report was either to detect a near-threshold target (“Did you see or not see a 

stimulus?”, Experiments 1 and 3) or to compare the strength of a suprathreshold target to a 

learned reference (“Was the stimulus stronger or weaker than the reference?”, Experiments 2 

and 4). We instructed participants to report subjective strength based on how visibly the gratings 

appeared to stand out from the noise or how visibly the texture-defined figures appeared to 

“pop-out” from the background, with excerpts of the instructions provided in the Supplementary 

Methods. In three experiments (1-3), participants additionally specified whether or not they saw 

the feature relevant for the objective task: the orientation of the grating or oval. Even if a target 

was not physically presented or consciously detected, participants nonetheless made a forced-

choice guess about the orientation, so that every trial provided a concurrent objective and 
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subjective measure, using a single key press to preclude post-choice effects51,52, except in 

Experiment 2, in which participants reported the feature visibility judgment using a second key 

press.  

 

Figure 1. Spatial attentional cueing task. a) Trial timeline. A central precue before the targets directed 
attention covertly to one or all four target locations. A response cue after the targets indicated which 
peripheral quadrant to report, which most often matched the precued location (of the 80% of trials in 
which a single location was precued, the precue was 75% valid). b) Targets were either contrast-defined 
gratings (Experiments 1 and 2) or texture-defined figure-ground ovals (Experiments 3 and 4), which 
varied independently across 7 strengths in each quadrant. c) Participants made an objective orientation 
report and a subjective visibility report about the response-cued quadrant. The subjective visibility report 
was either to detect a threshold strength stimulus (Experiments 1 and 3) or to compare the visibility of a 
suprathreshold stimulus to a learned reference (Experiments 2 and 4). In three experiments (1-3), 
participants also specified whether or not they subjectively saw the task-relevant feature: the orientation 
of the grating or oval. 
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Objective and subjective reports increased with stimulus strength  

We first assessed objective performance (Figure 2a) and subjective visibility reports (Figure 

2b, 3b) separately as functions of stimulus strength. In all experiments, objective performance 

was the proportion correct in identifying the target orientation—p(correct discrimination). Chance 

performance was 50%. We operationalized subjective visibility as the proportion of trials 

participants reported seeing the target—p(“saw stimulus”)—which was presented half of the 

time in the detection experiments. In the suprathreshold experiments, we indexed subjective 

strength by asking participants to rate how strong the target appeared relative to a middle 

reference strength they had learned before the main experiment (see Methods, Reference 

training) and measured the proportion of trials they reported the test stimulus as stronger than 

the reference—p(“test stronger”). We similarly quantified the proportion of trials in which 

participants reported seeing the task-relevant feature—p(“saw feature”) (Figure 3b).  

Whereas the contrast dependence of grating discriminability3,5,53 and visibility10–14 is well 

established, the effect of texture line length on the perception of texture-defined figures has not 

been tested without accompanying luminance confounds54. Here we ensured all textures had 

equal luminance (see Methods, Luminance calibration). Therefore, we first sought to confirm the 

effects of our stimulus manipulations on objective and subjective reports. We found that all 

objective (Figure 2a) and subjective measures (Figure 2b, 3b) increased with stimulus strength 

for both grating and texture targets (all p<0.001, full ANOVA tables are presented as 

Supplementary Tables 1-3) and spanned a wide range of performance and visibility levels, 

confirming the efficacy of our stimulus manipulations. Planned pairwise comparisons revealed 

each successive increment in stimulus strength significantly increased objective and subjective 

reports across all experiments (all p<0.004 after Holm's correction). Participants reported seeing 

the task-relevant feature significantly less often than they reported seeing the stimulus 

(Experiment 1 gratings: (F(1,28)=138.75, p<0.001, 𝜂𝐺
2=0.39; mean difference=26% [25,28]); 

Experiment 3 textures: (F(1,28)=108.61, p<0.001, 𝜂𝐺
2=0.39; mean difference=26% [24,28]). 

Thus, subjectively perceiving a stimulus did not guarantee subjectively perceiving its features, 

even for easily discriminable features (e.g., +45° vs. -45° tilted gratings). 

Attention improved objective performance 

To characterize the impact of attention on the full psychometric function, we fit Weibull functions 

to each participant’s objective and subjective reports, separately, for each cue validity condition 

(see Methods, Psychometric function fits). Across all experiments, attention improved 

orientation discrimination performance (main effect of validity: F(2,222)=892.80, p<0.001, 

𝜂𝐺
2=0.52, ε=0.70, Supplementary Table 1), consistent with previous reports3,12,20. Averaged 

across stimulus strengths, performance was highest on valid (87% [84,90]), intermediate on 

neutral (77% [74,79]), and lowest on invalid (66% [63,68]) trials. Reaction times were fastest for 

valid (0.55 s [0.53,0.58]), intermediate for neutral (0.87 s [0.84,0.90]), and slowest for invalid 

(0.97 s [0.94,0.99]) trials (F(6,666)=14.56, p<0.001, 𝜂𝐺
2=0.01, ε=0.35), ruling out speed-accuracy 

tradeoffs as driving performance improvements55 (Supplementary Figure 2). The benefit of 

attention on performance was greater at higher stimulus strengths, as revealed by an interaction 

of stimulus strength and validity (F(12,1332)=53.93, p<0.001, 𝜂𝐺
2=0.08, ε=0.75), consistent with 

multiplicative response gain3. These across-experiment effects of attention were also significant 

for each experiment individually. In the two detection experiments, attention improved 

performance even for stimuli reported as unseen56 (Supplementary Figure 3) (main effect of 
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validity: F(2,112)=5.48, p=0.006, 𝜂𝐺
2=0.03, ε=0.94, Supplementary Table 4), though we cannot 

be sure participants had no conscious experience of the stimulus for all such trials57,58. 

Figure 2. Inattentional inflation of stimulus visibility. In four experiments (one per row), a) objective 
performance increased with stimulus strength and with attention (blue = valid, gray = neutral, red = 
invalid). Contrast values indicate the grating contrast alone, not including the noise contrast, which was 
higher (50%) in Experiment 1 and lower (20%) in Experiment 2 to allow the gratings to be more visible. b) 
Subjective reports of stimulus visibility increased with stimulus strength, and attention increased the 
sensitivity to stimulus strength. Apart from when the grating contrast was zero in Experiment 1 (marked 
with x’s), the data show responses to when the target was present. Target absent data were also 
collected in Experiment 3, plotted in Supplementary Figure 4. Solid vertical lines mark the reference 
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strength in the suprathreshold experiments. c) Subjective reports increased with objective performance. 
As a function of performance, subjective reports were higher for unattended than attended stimuli 
(subjective inflation). Gray-shaded regions mark the shared range of performance across attention 
conditions. For a range of matched performance, d) the area under the relative psychometric function46 
(AUC) was greater for unattended than attended stimuli (repeated measures ANOVA per experiment, all 
p<0.001). Group means are fit with Weibull functions (a,b) or their corresponding relative psychometric 
function (c) for visualization. The portion of the fit spanning the range of performance observed between 
the lowest and highest stimulus strengths is shown as a solid line; the portion extrapolated to chance 
performance is dotted. *p<0.05, **p<0.01, ***p<0.001. Data (total n=119; Experiments 1-3 each n=30, 
Experiment 4 n=29) are presented as mean values ±1 SEM.  

 

Figure 3. Inattentional inflation of task-relevant feature visibility. In three experiments (one per row), 
a) objective performance increased with stimulus strength and with attention (blue = valid, gray = neutral, 
red = invalid; same data as Figure 2a). b) Subjective reports of seeing the task-relevant feature (i.e., the 
orientation of the grating or oval) increased with stimulus strength. c) Subjective reports as a function of 
objective performance. For a matched range of performance (shaded gray region), subjective reports of 
the task-relevant feature were higher under inattention in Experiments 1 and 3. d) The AUC was greater 
for unattended than attended stimuli in threshold (repeated measures ANOVA per Experiment 1 and 3, all 
p<0.011) but not suprathreshold regimes (Experiment 2, non-significant trend in the opposite direction, 
p=0.118), so inattention inflated the task-relevant feature but only in threshold regimes. Group means are 
fit with Weibull functions (a,b) or their corresponding relative psychometric function (c) for visualization. 
The portion of the fit spanning the range of performance observed between the lowest and highest 
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stimulus strengths is shown as a solid line; the portion extrapolated to chance performance is dotted. 
*p<0.05, **p<0.01, ***p<0.001. Data (total n=90; n=30 per experiment) are presented as mean values ±1 
SEM.  

Attention increased the sensitivity of subjective reports to stimulus strength 

Attention increased subjective reports of stimulus visibility overall (Figure 2b) (main effect of 

validity: F(2,222)=82.33, p<0.001, 𝜂𝐺
2=0.05, ε=0.70), which was driven by Experiments 1-3. In 

Experiment 4, attention primarily increased the sensitivity of subjective strength reports to line 

length. Attention also increased subjective reports of seeing the task-relevant feature (Figure 

3b) (F(2,168)=327.53, p<0.001, 𝜂𝐺
2=0.27, ε=0.63), with significant effects observed in each 

experiment that included this measure (all p<0.001, Supplementary Tables 2-3). The 

attentional modulation of subjective reports was more pronounced at higher stimulus strengths, 

for both reports of stimulus visibility (interaction of stimulus strength and validity: 

F(12,1332)=67.52, p<0.001, 𝜂𝐺
2=0.05, ε=0.53) and task-relevant feature visibility 

(F(12,1008)=71.71, p<0.001, 𝜂𝐺
2=0.06, ε=0.48).  

In fact, for weak or absent stimuli, inattention tended to elicit stronger subjective reports (Figure 

2b). In particular, in the threshold detection tasks, the probability of reporting seeing a stimulus 

when none was present (i.e., false alarms) was higher under inattention21,22, for both grating 

(Figure 2b, row 1) (F(2,56)=21.88, p<0.001, 𝜂𝐺
2=0.07, ε=0.58) and texture stimuli 

(Supplementary Figure 4) (F(2,56)=9.54, p<0.001, 𝜂𝐺
2=0.03, ε=0.61). In the suprathreshold 

comparison tasks, the probability that the test stimulus was reported as appearing stronger than 

the reference, in cases when the test was in reality weaker, was again higher under inattention, 

for both grating (Figure 2b, row 2) (F(2,56)=11.67, p=0.001, 𝜂𝐺
2=0.04, ε=0.67) and texture 

stimuli (Figure 2b, row 4) (F(2,54)=30.43, p<0.001, 𝜂𝐺
2=0.11, ε=0.75). Thus, attention increased 

the sensitivity of subjective reports of stimulus visibility to the true physical strength of the 

stimulus, resulting in relatively lower reports for absent or weaker stimuli and higher reports for 

stronger stimuli when they were attended vs. unattended.  

The strength-dependent effects of attention on subjective measures may seem at odds with 

reports of attention increasing perceived strength across the entire psychometric 

function11,13,14,59; however, methodological differences can reconcile the two patterns. In studies 

that report wholesale increases in subjective measures with attention, participants judged which 

of two simultaneous stimuli appeared stronger, so that enhancement of the cued stimulus and 

suppression of the non-cued stimulus together contributed to the visibility judgment. Using this 

approach, a stimulus of a given physical strength was more often deemed stronger when cued 

than non-cued. In our experiments, the visibility judgment involved comparing a single stimulus 

to an internal criterion for detecting a stimulus (Experiments 1 and 3) or an internal criterion of 

the reference strength (Experiments 2 and 4). 

Apparent effects of attention on criterion setting may be better characterized as 

sensitivity effects 

In a signal detection theory (SDT) framework60,61, attention consistently improves detection 

sensitivity20,21,62 (d’)—the ability to determine whether a target is present vs. absent—but its 

effects on criterion (c)—the propensity to report seeing a target—have been mixed20,21,44. 

Therefore we used SDT to assess sensitivity and criterion in the two detection experiments 

(Experiments 1 and 3). 
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In Experiment 1, there is one set of target-absent trials (when the grating contrast = 0) and 

multiple sets of target-present trials (when contrasts > 0). These trials are intermixed and 

indistinguishable aside from contrast differences, so it is not possible for participants to set more 

than one criterion per attention condition. Conversely, in Experiment 3, each line length has its 

own set of target-absent and target-present trials, so separate criteria can, in principle, be set 

for each line length. Here, to facilitate comparisons across experiments and to previous 

literature, we chose to analyze all data by estimating different criteria 𝑐YN for each stimulus 

strength level (where 𝑐YN specifies the yes-no criterion, commonly referred to simply as c, 

estimated per stimulus strength. See Supplementary Note 2 for a complete discussion of the 

modeling and interpretation of criteria in these different experimental designs). 

Although attention has previously been found to yield higher 𝑐YN values in near-threshold tasks 

by Rahnev et al.21, their computational model predicts that this effect should reverse at high 

enough stimulus strengths (Supplementary Note 2). Our findings confirm this prediction 

(Figure 4a, Supplementary Figure 5b) (interaction of validity and stimulus strength: 

F(12,672)=61.69, p<0.001, 𝜂𝐺
2=0.04, ε=0.61). Attention increased 𝑐YN at weaker stimulus 

strengths but its effect gradually reversed, such that attention decreased 𝑐YN at higher stimulus 

strengths. At matched detection sensitivity, the effect of attention was consistently to reduce 𝑐YN 

(Supplementary Figure 5c).  

 

Figure 4. Attentional modulation of signal detection theory measures. a) Here we show the 
difference in the yes-no criterion 𝑐YN between valid and invalid attention trials for detecting gratings 

(Experiment 1, blue) or texture-defined ovals (Experiment 3, orange) as a function of stimulus strength, 
which was controlled by either grating contrast (bottom x-axis) or texture line length (top x-axis). Attention 
made 𝑐YN more conservative (positive difference) at lower stimulus strengths, which reversed (negative 

difference) at higher stimulus strengths (but see Supplementary Note 2 for why these patterns may be 
best understood in terms of differences in sensitivity rather than criterion setting; in connection with this, 
note how the 𝑐YN patterns mirror those of d’ in panel b). b) Across both detection experiments, attention 

improved detection sensitivity (d’) and more so at stronger stimulus strengths. The effects of attention on 
SDT measures were consistent for detecting a stimulus as a whole (dashed lines) and for detecting a 
particular stimulus feature, the grating or oval orientation (solid lines). Data (total n=60; Experiments 1 
and 3 each n=30) are presented as mean values ±1 SEM. 

Meanwhile, attention increased detection sensitivity across the entire psychometric function 

(main effect of validity: F(2,112)=296.54; p<0.001, 𝜂𝐺
2=0.40, ε=0.74), and more so at higher 
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stimulus strengths (interaction of stimulus strength and validity: F(12,672)=56.13, p<0.001, 

𝜂𝐺
2=0.10, ε=0.77) (Figure 4b, Supplementary Figure 5a). As detailed in Supplementary Note 

2, due to Experiment 1’s task structure, there can only be one criterion per attention condition, 

and so 𝑐YN values computed for each stimulus strength must reflect changes in sensitivity rather 

than criterion setting. A similar phenomenon likely occurs in Experiment 3, since the empirical 

relationship between 𝑐YN and d’ in that experiment closely mirrors the arithmetic relationship of 

these quantities in Experiment 1 (Supplementary Figure 5c). The measurement here of full 

psychometric functions thus suggests that the apparent effects of attention on criterion setting 

previously reported21,22,44 may be attributable to the effects of attention on sensitivity.  

Across both detection experiments, the effect of attention on SDT measures for detecting the 

task-relevant feature behaved the same as its effect on detecting the stimulus as a whole: 

attention increased detection sensitivity across the entire psychometric function (Figure 4b, 

Supplementary Figure 5a) (main effect of validity: F(6,336)=397.97, p<0.001, 𝜂𝐺
2=0.64, ε=0.72) 

and more so at higher stimulus strengths (interaction of validity and stimulus strength: 

F(12,672)=47.89, p<0.001, 𝜂𝐺
2=0.10, ε=0.74), while making 𝑐YN more conservative or liberal, 

depending on stimulus strength (Figure 4a, Supplementary Figure 5b) (interaction of validity 

and stimulus strength: F(12,672)=58.27, p<0.001, 𝜂𝐺
2=0.04, ε=0.66). The effects of attention on 

the SDT measures were significant for each detection experiment individually and for both 

subjective reports types (all p<0.001, Supplementary Tables 5-8).  

To confirm that these effects of attention on SDT measures did not depend on any unmet 

assumptions of equal variance of the internal noise and signal distributions, we also calculated 

the unequal variance measures: da and ca (see Methods, Signal detection theory). The effects of 

attention on these measures were consistent with those found for d’ and 𝑐YN (Supplementary 

Figure 6, Supplementary Tables 9-12).  

Inattentional inflation of stimulus visibility 

After characterizing the effects of attention on objective and subjective measures separately, we 

turned to our main question: under what conditions, if any, does inattention lead to subjective 

inflation? To test for inattentional inflation, we determined whether subjective reports were 

higher for unattended items, when matched in performance to attended ones. For each attention 

condition, we plotted subjective reports as a function not of stimulus intensity but of 

discrimination performance. Leveraging the psychometric functions fitted separately to objective 

and subjective measures, we then constructed a "relative psychometric function" to describe 

their relation46,49 (Methods, Relative psychometric function) (Figure 2c).  

Across all attention conditions, subjective reports increased monotonically and in most cases 

nonlinearly with increasing performance (Figures 2c, 3c), as has been noted in other studies 

collecting joint measures46,57,58,63. So although increases in performance with stimulus strength 

were accompanied by increases in visibility, the two changed at different rates as stimulus 

strength increased across its full range. 

Attention changed the relation between objective and subjective reports, as shown by the 

divergence of the relative psychometric functions across validity conditions in most cases. To 

quantify the effect of attention on the relative psychometric function, we calculated for each 

validity condition the area under the curve for the subjective measure (on the y-axis) across a 

range of performance common to all conditions (on the x-axis) ("AUC," see Methods, Area 
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under the relative psychometric function). A higher AUC indicates subjective reports in one 

condition were "inflated" over another, when the range of performance across conditions was 

matched (shaded gray regions in Figures 2c, 3c).  

Across all experiments, the AUC for stimulus visibility (Figure 2d) was strongly and significantly 

modulated by attention: largest for invalid (0.13 [0.11,0.14]), intermediate for neutral (0.10 

[0.08,0.11]), and smallest for valid (0.08 [0.06,0.09]) conditions (F(2,222)=117.24, p<0.001, 

𝜂𝐺
2=0.14, ε=0.91), revealing robust inattentional inflation across the full relative psychometric 

function. Inattentional inflation was significant for each experiment individually (all p<0.001, 

Supplementary Table 13) and found for most participants (Supplementary Figure 7). 

Inattentional inflation of task-relevant feature visibility 

To evaluate the possibility that subjective inflation arises from objective and subjective reports 

accessing different stimulus information, we asked participants to report whether or not they 

saw the feature relevant for the objective task (the orientation of the grating or oval) in three 

experiments (1-3). For near-threshold coarse discrimination tasks (as in Experiments 1 and 3), it 

is usually assumed that discriminating between very different stimulus features (e.g., +45° vs. -

45° tilted gratings) relies on the same information as detecting the stimulus as a whole64. 

Perhaps as a result, studies of subjective inflation have never separately assessed inflation for 

the stimulus (e.g., “Did you see the stimulus?”) vs. the task-relevant feature (e.g., “Did you see 

the stimulus orientation?”). 

Across all experiments, the AUC for feature visibility was significantly modulated by attention 

(Figure 3d): largest for invalid (0.10 [0.08,0.11]), intermediate for neutral (0.09 [0.08,0.10]), and 

smallest for valid (0.08 [0.07,0.10]) conditions (F(2,168)=6.54, p=0.004, 𝜂𝐺
2<0.01, ε=0.78, 

Supplementary Table 14). This pattern indicates that even when subjective reports stipulated 

the task-relevant feature, the relationship to feature discriminability could nonetheless decouple 

with attention.  

However, following a significant effect of experiment (F(2,84)=7.26, p<0.001, 𝜂𝐺
2=0.13) and an 

interaction of experiment and validity (F(4,168)=7.67, p<0.001, 𝜂𝐺
2=0.02, ε=0.78) on the “feature-

visibility” AUC, we tested inflation of the task-relevant feature within each experiment. 

Inattention significantly inflated the task-relevant feature in threshold regimes, for both grating 

(Experiment 1: F(2,56)=14.63, p<0.001, 𝜂𝐺
2=0.10, ε=0.62) and texture (Experiment 3: 

F(2,56)=5.27, p=0.011, 𝜂𝐺
2=0.02, ε=0.89) stimuli (Figure 3d, top and bottom rows). But we found 

no evidence for inflation of the task-relevant feature in suprathreshold regimes for grating stimuli 

(Experiment 2: F(2,56)=2.22, p=0.118, 𝜂𝐺
2<0.01, ε=0.64); if anything the pattern went slightly in 

the opposite direction (Figure 3d, middle row). We could not assess inflation for the task-

relevant feature in suprathreshold texture stimuli, as feature-specific subjective reports were not 

collected in Experiment 4. Thus, we only found evidence for inattentional inflation of the task-

relevant feature in threshold regimes.  

All effects of attention on the stimulus- and feature-level AUC were simultaneously replicated 

across two experimental sites (no significant interactions of site and validity, all p>0.071; 

Supplementary Table 13-14) (Figure 5).  
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Figure 5. Inflation results replicated across experimental sites. The relative psychometric function 
AUC, quantifying subjective reports over a matched range of objective performance, at each experimental 
site (Boston University [BU] vs. University of California Irvine [UCI]). A larger AUC indicates one attention 
condition (blue = valid, gray = neutral, red = invalid) yielded “inflated” subjective reports over another, for 
a shared range of performance. Inattention inflated subjective reports of the overall stimulus (top) in all 
four experiments. Inattention inflated reports of the task-relevant feature (orientation, bottom) in threshold 
regimes (Experiments 1 and 3) but not suprathreshold regimes (Experiment 2). All effects of attention 
were simultaneously replicated across the two experimental sites (no significant interaction of site and 
validity for any experiment and visibility measure, all p>0.071). Data (n=15 per site and experiment, 
except Experiment 4 UCI n=13) are presented as mean values ±1 SEM.  

Comparing inattentional inflation across stimulus types, stimulus strength regimes, and 

visibility measures  

Finally, to compare inattentional inflation across different stimulus types, stimulus strength 

regimes, and visibility measures, we calculated an attentional modulation index (AMI) (Figure 6) 

as the AUC on valid trials subtracted from that on invalid trials, divided by their sum (see 

Methods, Attentional modulation index). Positive AMI values indicate inattentional inflation, 

negative values indicate inattentional deflation, and an AMI of zero indicates no dissociation of 

objective and subjective reports with attention. In all experiments, the AMI for stimulus visibility 

was significantly above zero (F(1,110)=517.17, p<0.001, 𝜂𝐺
2=0.83; mean AMI=0.51 [0.44, 0.58]), 

confirming strong and consistent inattentional inflation of the overall stimulus.  
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Figure 6. Comparing inattentional inflation across experiments. The AMI, quantifying the degree and 
direction with which objective and subjective reports dissociate with attention, was significantly greater 
than zero for stimulus visibility (light green) in all experiments (p<0.001), indicating robust and widespread 
inflation under inattention. Inflation of the overall stimulus visibility was more pronounced in 
suprathreshold (Experiments 2 and 4) than threshold-strength (Experiments 1 and 3) regimes (p<0.001). 
Inattention also inflated visibility of the task-relevant feature (dark green) but only in threshold regimes. 
Data (total n=118; Experiments 1-3 each n=30, Experiment 4 n=28) are presented as mean values ±1 
SEM.  

Comparing the AMIs for suprathreshold (Experiments 2 and 4) vs. threshold-strength 

(Experiments 1 and 3) stimuli revealed that stimulus-level inattentional inflation not only 

occurred beyond threshold vision, but was significantly more pronounced in suprathreshold 

regimes (main effect of strength regime: F(1,110)=197.65, p<0.001, 𝜂𝐺
2=0.64; suprathreshold 

AMI 0.83 [0.77, 0.90] > threshold AMI 0.20 [0.14, 0.26], Supplementary Table 15). This pattern 

was similar for grating and figure-ground stimuli (no significant effect of stimulus type: 

F(1,110)=3.58, p=0.061, 𝜂𝐺
2=0.03). Although the decoupling between objective and subjective 

reports was statistically more pronounced for the suprathreshold experiments, these results do 

not necessarily imply that attention had a larger effect on performance-matched visual 

experience at suprathreshold, given that participants were asked to make qualitatively different 

kinds of subjective judgments about their visual experience in the tasks at threshold vs. 

suprathreshold. 

For near-threshold figure-ground stimuli (Experiment 3), the magnitude of inflation was similar 

for the overall stimulus and the task-relevant feature (no effect of visibility measure: p=0.707). 

But interestingly, for near-threshold grating stimuli (Experiment 1), inflation of feature visibility 

was stronger than inflation of stimulus visibility (main effect of visibility measure: F(1,56)=7.51, 

p=0.008, 𝜂𝐺
2=0.12; AMI feature=0.41 [0.31, 0.51], AMI stimulus=0.23 [0.15, 0.31]).  

All measures of AMI were simultaneously replicated at two experimental sites (no significant 

effect of site, all p>0.459, Supplementary Table 15). Moreover, to ensure that AMI analysis 

results were replicable, separate analysis pipelines that computed the AMI from raw data were 

developed independently at each site. The sites communicated to align their analytic 

approaches conceptually but did not share code. There was no effect of analytic pipeline on AMI 

measures (all p>0.657, Supplementary Table 16) (Supplementary Figure 8). Therefore, the 
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results were robust to differences in experimental setups and samples across sites and to any 

idiosyncrasies in analytic choices across pipelines.  

Discussion 

In four experiments manipulating voluntary spatial attention, we tested claims that the 

unattended visual periphery can appear “subjectively inflated” relative to objective performance. 

We put the phenomenon to several key tests. Inattentional inflation was examined in threshold 

to suprathreshold regimes, using different stimulus types, and over wide ranges of performance. 

When the subjective report concerned the overall stimulus, inattentional inflation withstood all 

tests: covertly unattended items were reported as appearing stronger and more visible than 

attended ones, over matched ranges of performance. However, when the subjective report 

specified the visibility of the feature relevant for the objective task, we found that inattentional 

inflation only survived tests in threshold regimes. The results indicate attention regularly, though 

not invariably, dissociates objective and subjective aspects of perception, thus preserving 

inattentional inflation as a possible explanation of the apparent richness of the unattended 

periphery and as a motivating observation for higher-order theories of consciousness.  

Using a high-powered experimental design and improved methodology, we overcame limitations 

of previous studies to provide strong evidence for both the existence and extent of inattentional 

inflation. While subjective inflation has been an influential concept in the field24,25,27–30,33,39,65–75 it 

has been based on relatively limited empirical evidence, even in a threshold regime21,23,43. 

Beyond threshold, tests of subjective inflation have not been reported, leaving it unknown 

whether inflation could affect the perception of clearly visible stimuli typical of normal viewing 

conditions.  

We tested the robustness and generality of inattentional inflation in several ways. First, we used 

an analytic approach recently developed by our group46 to relate objective and subjective 

reports over full psychometric functions. This strategy allowed us to measure subjective reports 

over large matched ranges of performance across conditions, which was not possible using 

previous “performance matching” approaches21,22 that restricted tests of inflation to single 

performance levels. Second, we developed an approach to test inflation beyond threshold 

regimes, by having participants compare the subjective strength of a clearly visible target to a 

reference, while discriminating a target feature. Together, these methodological advances 

enabled tests of inattentional inflation across a full range of performance levels and stimulus 

strengths, revealing that inflation is strong, widespread, and replicable, though not without limits.  

Our findings demonstrate that inattentional inflation generalizes to stimuli beyond those 

dependent on low-level visual properties, like contrast21,23 and color22 sensitivity. When the 

peripheral targets were texture-defined figure-ground stimuli, inattention inflated how strongly 

the figures appeared to “pop-out” from the background, showing that inflation can occur for 

stimuli defined by the mid-level visual property of texture segmentation. Inflation of these figures 

behaved similarly to that of simple gratings, indicating the phenomenon can operate at multiple 

levels of processing and may be commonplace in everyday vision. Moreover, figure-ground 

stimuli generate visual cortical recurrent processing54,76–79, a candidate first-order substrate of 

conscious vision40,41. Assessing subjective experience using these particular stimuli can thus 

help arbitrate and refine theories of conscious perception.  
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Stimulus-level inflation also generalized to suprathreshold regimes. Indeed, of the conditions we 

tested, subjective reports of suprathreshold stimulus visibility exhibited the largest magnitude of 

inflation. One author's experience was that inflation effects are obvious at the single-trial level in 

the suprathreshold task, prompting an alternative framing of inflation that may inform future 

research (Supplementary Note 3). The striking suprathreshold inflation of perceived stimulus 

strength may contribute to the impression of a rich, intact visual world that extends across the 

visual field and beyond the focus of attention28,29,33,66,80. If the subjective strength of unattended 

items can far exceed what might be predicted from feature discriminability in suprathreshold 

scenarios, this discrepancy may help explain the sense of surprise in inattentional81 and 

change82 blindness demonstrations, in which people fail to notice a salient stimulus or stimulus 

alteration but feel certain they should have, given their subjective impressions. It may suggest 

that unless explicitly instructed, people make such metacognitive assessments based on overall 

stimulus visibility rather than the visibility of a particular stimulus feature.  

If objective and subjective reports derive from different stimulus features83,84, their dissociation 

can be straightforwardly explained. For example, motion in the periphery could signal 

someone’s approach without indicating their identity, and such different information sources 

could be differentially affected by attention53. A strong test of inflation should therefore constrain 

subjective reports to the stimulus feature relevant for the objective task. But previous studies 

have not attempted to do so. When we asked participants to report the visibility of the feature 

discriminated in the objective task, subjective reports were still inflated under inattention in 

threshold regimes. However, in the suprathreshold task where these reports were available 

(Experiment 2 with grating stimuli), we did not find inflation of the task-relevant feature; instead, 

the relative psychometric functions were statistically indistinguishable across attention 

conditions. We do note that these were the only reports to be collected with a second keypress, 

so it is possible that post-decisional effects or extra cognitive load uniquely affected these 

subjective judgments in a way that obscured potential inflation effects. Thus, while we found that 

inattention does not inflate feature visibility in some suprathreshold scenarios, feature-level 

inflation was robust and consistent near the detection threshold.  

A prominent model of inattentional inflation at threshold is based on signal detection theory21. 

According to this model, separable components of the internal signal govern subjective reports 

and objective performance, allowing their dissociation. A stimulus is reported to be visible when 

its internal signal magnitude exceeds a threshold, whereas its discriminability depends on the 

signal-to-noise ratio. Inattention is hypothesized to decrease the response magnitude but 

increase the variability of the internal signal85, which can increase the likelihood of crossing a 

fixed detection threshold. Studies have shown dissociable effects of neural variability86,87 on 

objective and subjective aspects of perception, lending empirical support to the model. Its 

dissociable computational mechanisms may map onto dissociable aspects of subjective 

perceptual experience (Supplementary Note 3). 

This signal detection model21 can reproduce several key phenomena in our data regarding how 

perceptual metrics change for unattended stimuli relative to attended stimuli in detection tasks: 

false alarm rates increase; both subjective reports and objective performance become less 

sensitive to stimulus strength; and at matched performance, stimuli are reported as more visible. 

Additionally, the model can account for the yes-no criterion being more conservative under 

attention at low stimulus strengths, and it predicts that the criterion becomes more liberal under 

attention at high stimulus strengths. (See Supplementary Note 2 for further elaboration of this 

model prediction, and for an argument that this yes-no criterion effect may be better understood 
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not as an effect on criterion setting per se, but rather as an indirect reflection of more primary 

sensitivity effects.) Here, by measuring the full psychometric function, we not only confirm this 

prediction, but also provide a unifying explanation for apparent contradictions previously 

reported in the literature, wherein attention to peripheral stimuli has been variously found to 

correspond to conservative21,22,26, neutral20, or liberal44 shifts in the apparent detection criterion, 

depending on the task design and stimuli chosen. Although the model of Rahnev et 

al.21 qualitatively accords with several of our findings in the threshold regime, further work is 

required to extend this model and other contending models to determine their ability to capture 

feature-specific reports and suprathreshold regimes, and to quantitatively fit the entire dataset. 

According to higher-order theories of conscious perception, subjective inflation arises from an 

overestimation of the strength of the sensory signals governing performance, driven by a 

putative implicit metacognitive mechanism30. By proposing two levels of representation, higher-

order views can account for the decoupling between objective and subjective aspects of 

perception. But these views do not immediately explain why or under what circumstances they 

will come apart. In the case of attention, higher-order views do not in general explain why 

withdrawing attention should inflate subjective strength, when the first-order states are 

presumably comparable, yielding matched performance. That said, one proposal posits a 

higher-order Bayesian observer that misrepresents the distribution of sensory noise in the 

periphery or under inattention, leading to subjective inflation67,73.  

Some proponents of higher-order theories have interpreted the fixed threshold of visibility in the 

signal detection theory model21 as a higher-order mechanism, likely carried out in prefrontal 

areas88. In this view, the higher-order areas gate the entry into phenomenal consciousness, and 

the fixed criterion reflects a stable higher-order threshold for conscious perception32,33. However, 

the signal detection model is also compatible with some versions of a first-order view holding 

that the sensory signal is sufficient to generate conscious perception. The criterion could then 

be interpreted in different ways consistent with some versions of a first-order view71. For 

example, the criterion could reflect the sensory signals themselves exceeding some threshold 

that is not set by any higher-order mechanism. Inflation could then arise from attention changing 

the sensory signals, as in the signal detection model of Rahnev et al.21 Or, the criterion could be 

decisional rather than perceptual, governing whether the participant reports seeing the stimulus 

rather than whether they actually see it69,89,90, although the resistance of subjective inflation to 

feedback and reward gives some reason to think the phenomenon is perceptual21,23. Overall, 

while failure to find inattentional inflation would have challenged a motivation of higher-order 

theories—and the predictions made by higher-order theorists in the current adversarial 

collaboration—the behavioral demonstration of inflation is not on its own necessarily 

incompatible with first-order theories (Supplementary Note 1).  

Importantly, given the clear data obtained here, any theory of subjective awareness must now 

take seriously the phenomenon of inattentional inflation. First-order theories must account for 

the widespread occurrence of inflation, while higher-order theories must account for the 

conditions under which it is absent. The current dataset, testing large numbers of experimental 

conditions with high trial counts, provides by far the most comprehensive extant data on 

subjective inflation, and theories of awareness should seek to explain the detailed pattern of 

these data. The measurement of full psychometric functions is likely to strongly constrain model 

fits, allowing model identification that would not be possible with single pairs of performance-

matched stimuli. The current dataset, which we have documented and made publicly available 

to invite model fitting by the wider community, can serve as a benchmark dataset for the field. 
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Going forward, inattentional inflation presents an opportunity to identify the neural processes 

specific to subjective perception. Typically, the neural signals that track subjective strength 

tightly correlate with stimulus processing that supports objective performance, confounding their 

interpretation45,91,92. But by reliably dissociating objective and subjective aspects of perception, 

inattentional inflation may be a valuable approach to isolate the neural signals that uniquely 

covary with subjective strength while objective performance is controlled. Different theories of 

conscious perception make different predictions about which neural processes will correlate 

specifically with subjective strength (e.g., first-order processes in sensory areas42,90, higher-

order processes in prefrontal areas30, global ignition93; for reviews38,39,94), making inattentional 

inflation a promising tool—along with other methods for decoupling objective and subjective 

aspects of perception58,86,87,95–104 to adjudicate among these theories. 

The idea that our introspection can be but a dubious authority on our own visual performance 

has long been recognized. Clinical cases in which visual cortical damage leads to ignorance of 

residual capacity (blindsight)105 or incapacity (Anton’s syndrome)106 have shown powerful, 

sometimes permanent dissociations between subjective reports of visual awareness and the 

objective ability to discriminate visual features. Our findings show that even in healthy 

observers, following temporary, voluntary fluctuations of visuospatial attention, objective and 

subjective aspects of perception routinely come apart. What we think we can see therefore  

may not accurately reflect how well we can distinguish visual features, particularly at the 

threshold of vision.  

Methods 

Participants 

One hundred twenty healthy adult humans (88 females and 32 males, ages 19-36, based on 

self-report) participated across four experiments, which was the preregistered target sample 

size. Fifteen participants per experiment participated at each of two research sites: Boston 

University (BU) and the University of California, Irvine (UCI). Each participant completed an 

average of ~3400 trials (range of 2288-4771 trials) across four to six 1.5-hour-long visits on 

separate days, for both a highly powered sample size and reliable measurements for each 

participant. Authors A.S., T.K., J.A.M., E.O., E.E.R., M.E.W., and J.W. participated in the 

experiments. All other participants were naive to the study design. All participants provided 

informed consent, and the University Committee on Activities Involving Human Subjects at BU 

and the Institutional Review Board at UCI approved the experimental protocols. All participants 

had normal or corrected-to-normal vision and were monetarily compensated for their time. No 

sex or gender-based analyses were performed, and we did not consider sex or gender in the 

study design, as neither sex nor gender played a role in our research questions. 

Procedure 

Participants were seated in a dark room 75 cm from a computer monitor. Stimuli were 

generated on Linux at BU and Windows at UCI using MATLAB and Psychophysics Toolbox107–

109. Stimuli were displayed on a VIEWPixx LCD monitor (VPixx Technologies Inc., QC, Canada) 

with a resolution of 1920 x 1080 pixels and a refresh rate of 120 Hz at BU and a CRT monitor 

(NEC MultiSync FE2111SB) with a resolution of 1280 x 1024 pixels and a refresh rate of 60 Hz 

at UCI. To linearize the contrasts, the displays were calibrated using a Konica Minolta LS-100 

Luminance Meter (Konica Minolta, Tokyo, Japan). Participants had their head position stabilized 

in a chin-and-head rest. Gaze position was continuously recorded at a sampling frequency of 
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1000 Hz using an EyeLink 1000 (SR Research Ltd., ON, Canada) at BU and 500 Hz using a 

LiveTrack Lightning eye-tracker (Cambridge Research Systems, Ltd., UK) at UCI. 

Task 

In all four experiments, participants performed a spatial attentional cueing task while fixating on 

a central cross (Figure 1, Supplementary Figure 1). The screen was divided into four 

quadrants. On each trial, participants viewed up to four peripheral targets, which varied 

independently across seven strengths. Only one quadrant was relevant for the report, as 

indicated by a post-stimulus response cue. Before the targets, one or all four arms of a black 

central precue, each 1° long by 0.1° wide, flashed white (50 ms) to direct covert attention focally 

to one quadrant (80% of trials) or in a distributed fashion across all quadrants (20% of trials; 

neutral attention condition). The focal precue matched the response cue with 75% validity, to 

incentivize using the spatial information provided by the precue, leading to 60% valid and 20% 

invalid attention trials overall. The precue appeared 300 ms before the targets, to allow for the 

deployment of covert attention to the cued location6,12. The targets were presented for 250 ms. 

A response cue 500 ms after target onset instructed participants to make both a forced-choice 

objective orientation report and a subjective visibility report about the response-cued quadrant 

(Figure 1c).  

The subjective report was either to indicate visibility of a near-threshold target (Experiments 1 

and 3) or to compare the strength of a suprathreshold target to that of a learned reference 

(Experiments 2 and 4). In experiments 1-3, participants also reported whether or not they saw 

the feature relevant for the objective task: the stimulus orientation. All objective and subjective 

reports were made using a single keypress, except the feature visibility report in Experiment 2, 

which was made using a second keypress. For the subjective reports, participants were 

instructed to report how the stimuli appeared to them and not, for example, their confidence in 

the orientation judgment or what they considered the stimulus contingencies to be. See 

Supplementary Methods for task instruction excerpts. 

When a response was registered, the fixation cross lightened to gray for 500 ms before the next 

trial was initiated. Otherwise, no feedback was provided. If no valid keypress was registered 

within 5 s following the response cue, the trial was aborted and not repeated. Participants rarely 

failed to make a valid keypress within the response window (on average 2.9 trials, SD=5.9). 

Between trials, a gray screen containing only the fixation cross appeared for 500 ms. The gray 

was a mid-gray (45.6 cd/m2  at BU, 60.7 cd/m2 at UCI) in the experiments with grating stimuli. In 

Experiment 3 with texture stimuli, 7 participants had the same mid-gray blank screen luminance. 

For the remaining participants in Experiments 3 and 4, the gray was lightened (78.7 cd/m2  at 

BU, 93.2 cd/m2 at UCI) to match the average texture luminance, with the goal of preventing eye-

tracking issues due to luminance changes between trial stages. 

Trials were grouped into consecutive runs of 560 trials. Within each run, precue validity and the 

location of the response-cued quadrant were counterbalanced. For each permutation of precue 

validity and response-cue location, stimulus strength and identity at the response-cued location 

were also counterbalanced. The presentation order of these counterbalanced conditions was 

pseudo-randomized within each run. On invalid trials, the location of the precued quadrant was 

randomly selected as one of the three locations not probed by the response cue. The stimulus 

properties at the non-response-cued quadrants were pseudo-counterbalanced, so that their 

marginal probabilities were controlled for within a run. Breaks were offered after every block of 



 

21 

112 trials, for 5 blocks per run. The attention manipulation and target timings were identical 

across experiments. However, the stimuli themselves and the nature of the task report differed 

from experiment to experiment.  

Stimuli 

Visual targets were contrast-defined gratings embedded in noise (Experiments 1 and 2) or 

texture-defined figure-ground ovals (Experiments 3 and 4). Targets were present either half the 

time at threshold strengths (Experiments 1 and 3) or all the time at suprathreshold strengths 

(Experiments 2 and 4). The experiments are reported in a different order than they were 

collected; the order of data collection adhered to the order in the preregistration: 1) threshold 

detection of figure-ground ovals (Experiment 3), 2) suprathreshold comparison of figure-ground 

ovals (Experiment 4), 3) threshold detection of gratings (Experiment 1), and 4) suprathreshold 

comparison of gratings (Experiment 2).  

Contrast-defined gratings. Gratings were luminance-modulated sinusoids with a spatial 

frequency of 1 cycle per degree. Gratings were centered at 5° eccentricity. In Experiment 1, the 

gratings were presented at low contrasts, calibrated per participant to be near threshold visibility 

when added to noise pedestals, and oriented ±45° from vertical. In Experiment 2, the gratings 

were presented at suprathreshold contrasts—fixed across participants from 5% to 50% in 7 log 

steps—and oriented about vertical at individual tilt thresholds (see Methods, Thresholding).  

Noise pedestals. Gratings were added pixelwise to noise pedestals, then placed in a circular 

aperture 5° in diameter with a cosine edge subtending 0.5° that gradually faded to the 

background gray. To generate each noise patch, Gaussian noise was bandpass filtered around 

the grating spatial frequency ±1 octave. The filtered noise was then centered at mid-gray 

(matching the background luminance) and scaled to the desired contrast, which was 50% in the 

Experiment 1 and lowered to 20% in Experiment 2 to allow the superimposed gratings to have 

higher signal to noise ratio, thus increasing their visibility. Noise patches that by chance 

deviated from the desired mean contrast by more than 2% were regenerated.  

Texture-defined figure-ground ovals. The texture “background” was made of parallel lines, 

oriented either ±45°, on which an oval “figure” delineated by orthogonal lines could appear 

(Supplementary Figure 1). Texture lines were black on a white background. The entire screen 

(21.6° by 38.4° at BU, 23.8° by 29.8° at UCI) was filled with textures, with the exception of a 

gray circle (2° radius) at the center of the screen containing the fixation cross and cues (see 

Methods, Online fixation monitoring). Each quadrant of the screen (5.4° by 9.6° at BU, 6.0° by 

7.4° at UCI) was filled with a unique background texture, made of many randomly placed lines 

of uniform length and orientation. On a given trial, the background texture lines across 

quadrants were of the same orientation but could vary in length. Texture lines were truncated at 

the quadrant boundaries and the perimeter of the central circle so that no lines crossed these 

boundaries. The number of lines drawn scaled with line length, so that the proportion of black 

pixels (which controlled the mean luminance of the display) was fixed to 0.15 across all textures 

(see Methods, Luminance calibration). 

The oval “figure” was centered at 8° eccentricity within a quadrant and oriented either vertically 

or horizontally along the major axis. Each oval was filled with a unique texture of many randomly 

placed lines, which were of the same length as the background texture lines but orthogonal in 

orientation. We ensured the ovals had buffers of at least 3.9° (at BU) or 1.7° (at UCI) between 
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their perimeter and the edge of the screen, to minimize edge interactions from providing 

information about the oval’s orientation. The buffer values correspond to the smallest distance 

between the edge of a vertically oriented oval and the top or bottom of the screen. Texture lines 

of the background and figure were truncated at the oval perimeter to provide a clean figure-

ground signal (see Figure 1b for examples).  

In the threshold detection experiment (Experiment 3), when the oval figures appeared, they 

were clearly elongated (5° by 3° in aspect ratio) but made difficult to segment from the ground 

by presenting the texture lines at short lengths, calibrated per participant to be near texture 

segmentation thresholds. In the suprathreshold experiment (Experiment 4), the texture lines 

were longer in length—fixed across participants from 0.18° to 3° in 7 common log steps—so that 

the oval figure was more clearly segmented from the ground, but the oval aspect ratio was 

calibrated per participant (i.e., made more circular) so that the orientation was difficult to 

discern. 

Random textures. Random textures consisted of scattered lines, each randomly oriented and 

drawn at any of the 7 possible line lengths. The mean luminance of the random textures 

(controlled by the proportion of black pixels) was fixed to 0.15, matching the luminance of the 

figure-ground textures (see Methods, Luminance calibration). Random textures were presented 

before the targets, starting from fixation (see Supplementary Figure 1 for timing), with the 

intent of reducing target-evoked contrast transients in future neuroimaging versions of the study 

and to reduce pupil-dilation effects at target onset.  

Luminance calibration. To control the mean luminance of the textures, we performed a 

calibration procedure prior to running the experiments. The calibration procedure was run 

separately on each stimulus presentation computer at each site to ensure consistency 

regardless of differences in display properties. The purpose of the calibration procedure was to 

determine, for a given line length, how many randomly placed texture lines should be drawn to a 

quadrant of the screen to ensure that the average proportion of black pixels in the quadrant 

achieved a target value. (It is not straightforward to derive an analytical solution for this problem, 

given that randomly placed lines may frequently overlap and be truncated at the quadrant 

boundaries.) The procedure ensured that all textures had equal luminance regardless of 

differences in line length and computer display properties. We chose a target proportion of 0.15 

black pixels to achieve qualitative similarity of appearance to texture stimuli previously used in 

the literature. 

The calibration procedure proceeded as follows. For a given line length 𝐿 and number of lines 

𝑁, many background textures were drawn. For each texture generated in this way, the 

proportion 𝑃 of black pixels drawn to the quadrant was computed. The expected value of the 

proportion of black pixels 𝑃 was then computed as the average of 𝑃 across texture instances. 

For a given value of 𝐿, the procedure was repeated for many values of 𝑁, generating samples of 

a function 𝑃 = 𝐹(𝑁|𝐿) describing how the expected proportion of black pixels 𝑃 depends on 

number of lines drawn 𝑁 for a given value of line length 𝐿. Interpolation of these samples was 

used to find the value 𝑁𝑇 achieving the desired target value of 𝑃 = 0.15 for the specified value  

of 𝐿. 

This procedure was then repeated for many values of 𝐿, generating samples of a function 𝑁𝑇 =
𝐺(𝐿) describing how 𝑁𝑇, the number of lines drawn to achieve 𝑃 = 0.15, depends on 𝐿. 

Interpolation of these samples was used to find the value 𝑁𝑇 achieving the desired target value 
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of 𝑃 = 0.15 for any arbitrary value of 𝐿. This second interpolation was necessary to determine in 

real time how many lines to draw to a quadrant for the many possible values of 𝐿 that could be 

probed during the thresholding procedure of Experiment 3. 

Since the structure of the random textures differed considerably from that of the oriented 

background textures, a similar calibration procedure was separately performed for the random 

textures to ensure proper luminance calibration at 𝑃 = 0.15. The line lengths of random textures 

were fixed values determined by the thresholding results for each participant, so this procedure 

only needed to interpolate over samples of a function 𝑃 = 𝐻(𝑁) and therefore could be 

performed quickly following the thresholding block to properly calibrate random textures for each 

participant before the main experiment. 

Thresholding 

To calibrate stimulus properties so that the objective task was appropriately challenging, each 

participant completed a thresholding procedure prior to the main experiment. The thresholding 

task was identical to the main task, except a stimulus feature was continuously adjusted 

between trials using the QUEST Bayesian adaptive staircasing procedure110 and all precues 

were neutral. The adjusted feature in the detection experiments was stimulus strength (i.e., 

grating contrast or texture line length) and in the suprathreshold experiments was the grating tilt 

or oval aspect ratio. Three independent thresholding tracks, each adaptively approaching a 

discrimination accuracy of 75%, were interleaved for a total of 240 trials (80 per track) 

contributing to threshold estimates. On each trial, one of the three tracks was selected pseudo-

randomly to set the strength of the response-cued stimulus to the current threshold estimate of 

that track, and subsequently that track had its threshold estimate updated using the participant’s 

accuracy on that trial. If the individual tracks did not qualitatively converge, participants repeated 

the thresholding procedure. There was no statistically significant difference in the median 

thresholded values by experimental site (factors of experiment and site, no effects of site, all 

p>0.144, Supplementary Table 17), suggesting the two experimental setups and samples 

were reasonably similar.  

During the thresholding procedure for the detection experiments (Experiments 1 and 3), while 

target-absent trials were included to mimic the structure of the main task, only target-present 

trials contributed to QUEST estimates. Likewise, although participants made a subjective 

visibility report simultaneously with their orientation report, as in the main experiment, only the 

orientation report contributed to threshold estimates. Using the thresholding track with the 

median threshold estimate, 5 middle stimulus strengths were selected to yield orientation 

discrimination accuracies of 60%, 67.5%, 75%, 82.5%, and 90%. The lowest and highest 

stimulus strengths were selected to yield near-floor and -ceiling performance. To select 

comparable values at each extreme, the lowest stimulus strength was chosen to be midway 

between the minimum possible strength (i.e., 0% contrast or a line length of 3 pixels) and the 

strength yielding near-chance (51%) accuracy on a common logarithm scale. The highest 

stimulus strength was chosen to be the line length yielding 90% accuracy plus 𝑑, where 𝑑 was 

defined as the distance on a common log scale between the lowest stimulus strength and the 

strength yielding 60% accuracy. However, if in Experiment 1 this procedure resulted in a 

maximum grating contrast that exceeded 1 when added to noise, the thresholding procedure 

was repeated. In Experiment 3, if the procedure resulted in a maximum line length that 

exceeded the length of the oval minor axis (3°), the maximum line length was instead set to 3°. 
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During the thresholding procedure for the suprathreshold experiments (Experiments 2 and 4), 

stimuli were fixed to the middle (16% contrast or 0.41° line length) of the 7 possible target 

strengths (5% to 50% contrast or 0.18° to 3° line length in log steps). Because the targets were 

always presented at a fixed, easily visible stimulus strength, no subjective report was required. 

Instead, the task was made challenging by adjusting the grating orientation or oval aspect ratio 

to yield discrimination accuracy of 75%. The mean thresholded grating tilt was 8.9° (SD=6.6°). 

The mean thresholded oval aspect ratio as a proportion of the maximum aspect ratio was 0.67 

(SD=0.31), with 1 corresponding to a maximally elongated oval (5:3° aspect ratio) and 0 a 

perfect circle. While the aspect ratio was adjusted, the area of the oval was held constant.  

Online fixation monitoring 

To ensure that effects of attention could not be attributed to saccades towards the precued 

location, participants were instructed to maintain fixation on a small black cross (0.35° wide) 

displayed within a gray aperture (2° radius) in the center of the screen. Before each session, a 

calibration sequence converted raw gaze position into degrees of visual angle. The start of 

every trial was contingent upon fixation for 500 ms within a 2° allowance. If fixation was not 

acquired within 10 s, participants were shown a message to keep their gaze locked on the 

center of the screen. If fixation was unable to be acquired within this time limit on two 

consecutive trials, the calibration sequence was repeated. After acquisition, fixation was 

enforced until the onset of the response cue. If fixation was lost before then, due either to a 

saccade or a blink, the trial was stopped and repeated at the end of the block. Any trial 

interrupted by a fixation break was not completed and therefore not part of the behavioral data 

used for analysis. On average, participants broke fixation on about 5% of trials. 

Task training 

To learn the task, participants first completed a self-guided instructions walk-through, followed 

by practice trials. Participants completed a sequence of practice trials with increasing difficulty: 

1) slowed-down trials, 2) full-speed trials with auditory feedback, and 3) full-speed trials with no 

feedback. 1) The slowed-down trials were identical to trials in the main task, except stimulus 

timings were slowed down by a factor of 4. Participants had unlimited time to respond and 

received trial-by-trial feedback about both the objective and subjective reports in text to check 

their target and response mappings (e.g., “At the cued location, the stimulus was: 

counterclockwise (-45°). Your response was: counterclockwise (-45°), saw a grating but not its 

orientation”). 2) On trials with auditory feedback, the pitch of a 250 ms tone indicated orientation 

discrimination accuracy (correct=784 Hz, G5; incorrect=523 Hz, C5). Tones were enveloped by 

cosine ramps 10 ms wide. When the response-cued target was absent, the orientation judgment 

was irrelevant, so the auditory feedback played a high tone (G5) with 75% chance and a low 

tone (C5) otherwise, matching the expected average accuracy after thresholding. 3) The full-

speed trials with no feedback mimicked trials in the main task.  

For all practice stages, cueing validity, the response-cued quadrant, and stimulus properties 

were randomly chosen on each trial. Each practice block was 10 trials. The experimenter 

observed the participant during the practice trials to verify comprehension of the task and to 

answer any questions between blocks. Participants were allowed to repeat any of these blocks 

of practice trials until they felt comfortable with the task. 
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Reference training 

In the suprathreshold experiments (Experiments 2 and 4), the subjective report was to judge the 

visibility of the target relative to a reference. To learn the reference strength, participants 

completed 120 trials identical to the main task, except all precues were neutral and the 

response-cued target was fixed to a “reference” strength, which was set to the middle value 

(i.e., 0.17 grating contrast or 0.41° line length) of the 7 pre-defined stimulus strengths in the 

main task (see Methods, Stimuli). Rather than make a subjective strength report, participants 

were instructed to notice and internalize the reference strength. Participants then completed 112 

trials incorporating the attentional precue, individually thresholded grating tilt or oval aspect 

ratio, and subjective report comparing the visibility of the target to the newly learned reference, 

mimicking the main task.  

Retention and exclusion 

Datasets from participants who completed fewer than 2240 trials (i.e., 4 runs) were considered 

incomplete and not included in the analyses reported here. Across the 4 experiments at both 

sites, 21 participants with partial datasets were excluded. All partial datasets were due to 

participant dropout. We recruited additional participants until we reached the preregistered 

target sample size with complete datasets. To encourage retention, a monetary completion 

bonus was introduced during the third experiment at BU and the fourth experiment at UCI.  

We excluded trials from analysis if no valid keypress was made before the response window 

timed out. One participant’s data from Experiment 4 was excluded from all analyses due to 

chance performance on the main task despite sensible behavior during the thresholding 

procedure. Another participant’s data from Experiment 4 was excluded from the AMI analyses 

because of chance performance on invalid trials regardless of stimulus strength, resulting in 

AUCs of 0 across all attention conditions, for which the AMI could not be computed. Although 

AUCs of 0 across attention conditions do not meaningfully contribute to the AUC analysis, the 

effect of attention on AUC was consistent whether or not this subject was included, so we 

included their data in the AUC analysis presented here.  

Data analysis 

Psychometric function fits 

We fit Weibull functions to characterize objective performance 𝑃1 = 𝐹1(𝑥; 𝜃1) and subjective 

reports 𝑃2 = 𝐹2(𝑥; 𝜃2) as functions of stimulus strength 𝑥, separately for each participant and 

attention condition. Here, 𝑃 denotes an objective or subjective measure as a probability, like 

p(correct), p(saw stimulus), or p(saw feature), and 𝜃 denotes the parameters of the Weibull 

function: 𝛼 (threshold), 𝛽 (slope), 𝛾 (guess rate), and 𝜆 (lapse rate). The full form of the Weibull 

function is given by: 

𝑃𝑛 = 𝐹𝑛(𝑥; 𝜃𝑛)  = 𝛾𝑛  +  (1 − 𝛾𝑛 − 𝜆𝑛) [1 − 𝑒−(𝑥/𝛼𝑛)𝛽𝑛
]  (1) 

Maximum likelihood estimation (MLE) of 𝜃 for each dataset was conducted using the 

Palamedes toolbox111, treating trial-level responses as outcomes of a Bernoulli process. All 
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parameters were free, except the guess rate for orientation discrimination performance 𝛾1, 

which was fixed to 0.5 corresponding to chance discriminability.  

Parameters were optimized in a two-stage process: first, the best parameter estimates over the 

following predefined grid were identified, which then served as the starting point for Nelder-

Mead optimization. 

𝛼: [0.05,3] in increments of 0.05  

𝛽: [10−1, 101] in increments of 100.1 

𝜆: [0,0.1] in increments of 0.01 

𝛾2 ∶ [0,1] in increments of 0.1 

Relative psychometric function 

To relate objective and subjective reports over their full psychometric functions, we created a 

general relative psychometric function (RPF) analysis framework46. An RPF is a function that 

characterizes how the values of one traditional psychometric function are related to the values 

of another when both depend on a common independent variable (such as stimulus strength). 

Applying the RPF framework to the current analysis, we expressed subjective reports 𝑃2 as a 

function of objective performance 𝑃1 using an RPF of the form 𝑃2 = 𝑅(𝑃1). The formula for R 

depends on the formulae for 𝐹1(𝑥) and 𝐹2(𝑥); here, since we used Weibulls to characterize both 

functions, we call the resulting RPF the Weibull RPF, denoted by 𝑅𝑊. Using equation (1), we 

can solve for 𝑥 = 𝐹1
−1(𝑃1) and plug this into the equation for 𝐹2 to arrive at the mathematical 

form of 𝑅𝑊: 

𝑃2 = 𝑅𝑊(𝑃1; 𝜃1, 𝜃2) = 𝛾2 + (1 − 𝜆2 − 𝛾2)

[
 
 
 

1 − 𝑒
−((

𝛼2
𝛼1

)
−𝛽2

(𝑙𝑛 (
1−𝜆1−𝛾1
1−𝜆1−𝑃1

) )
𝛽2/𝛽1

)

]
 
 
 

 (2) 

We used 𝑅𝑊 to mathematically characterize the relationship between subjective reports and 

objective performance, given the parameters 𝜃1 and 𝜃2. In turn, these parameters were found 

via independent MLE fits for 𝐹1(𝑥; 𝜃1) and 𝐹2(𝑥; 𝜃2), respectively. Full details of the relative 

psychometric function analysis framework can be found in Maniscalco et al.46 

Area under the relative psychometric function 

To quantify subjective reports over a given range of objective performance, following 

procedures established by Maniscalco et al.46, we calculated the area under the relative 

psychometric function (“area under the curve”, AUC). We approximated the cumulative integral 

of 𝑅𝑊 using the trapezoidal method, partitioning 𝑃1 into segments of 0.01 and computing 𝑃2 at 

each value using equation (2). We constrained 𝑃1to a matched range across attention conditions 

(shaded gray regions in Figures 2c, 3c) per participant. For all attention conditions of each 

participant, we set the lower bound of 𝑃1 to 0.5 (i.e., chance performance), capitalizing on the 

fact that psychometric function fits ensured defined values for 𝑃2 at 𝑃1 = 0.5. Separately for each 

participant, we set the upper bound of 𝑃1 to the maximum fitted 𝑃1 value within each attention 

condition that was minimal across conditions. This maximized the 𝑃1 interval used to compute 

AUC for each participant, subject to the constraint that AUC be computed using the same 𝑃1 

interval for each within-participant condition. This constraint ensured that any across-condition 

modulation in AUC was due only to differences in 𝑃2 over a fixed 𝑃1 interval. To measure 
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subjective inflation, we compared the AUC across varying levels of attention. A larger AUC 

indicates higher reported visibility for a given condition over a common range of objective 

performance.  

Attentional modulation index 

To compare the degree and direction with which subjective reports dissociate from objective 

performance with attention across different experiments, we calculated an attentional 

modulation index (AMI) for each participant as the difference in AUC between invalid and valid 

conditions as a proportion of their summed AUC.  

AMIAUC =
AUCInvalid − AUCValid

AUCInvalid + AUCValid
 (3) 

Signal detection theory 

We calculated signal detection theory measures61,112 of sensitivity (d’) and criterion (𝑐YN) using 

equations (4-5) for each participant and attention condition, where 𝑧 is the inverse of the normal 

cumulative distribution function and 𝑐YN denotes the criterion for the yes-no discrimination task 

(see Supplementary Note 2). To handle conditions with hit (𝐻) or false alarm (𝐹) rates of 0 or 

1, for which the signal detection measures are indeterminate, we applied a log-linear 

correction113, adding 0.5 to all response condition counts and 1 to all stimulus condition counts. 

These measures assume equal variance of the internal signal and noise distributions.  

𝑑′ = 𝑧(𝐻) − 𝑧(𝐹) (4) 

𝑐𝑌𝑁 = −0.5(𝑧(𝐻) + 𝑧(𝐹)) (5) 

We also calculated the signal detection variants da and ca using equations (6-7). These 

measures relax the equal variance assumption, but require estimating 𝑠, a slope parameter of 

the 𝑧-transformed receiver operator characteristic (ROC) curve (hit vs. false alarm rates). We 

leveraged our two subjective measures (of seeing the stimulus and of seeing the task-relevant 

feature) to estimate 𝑠 (Supplementary Figure 6c), taking the slope of the line between the two 

points in ROC space.  

𝑑𝑎 = √
2

1 + 𝑠2 (𝑧(𝐻) − 𝑠 × 𝑧(𝐹)) (6) 

𝑐𝑎 =
−√2𝑠

√1 + 𝑠2(1 + 𝑠)
(𝑧(𝐻) + 𝑧(𝐹)) (7) 
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Statistical analysis 

Mixed ANOVAs were performed in R (v4.3.1; R Core Team 2023) and MATLAB to evaluate: 1) 

the effects of stimulus strength and attention on objective and subjective reports, including 

signal detection theory measures, 2) the effects of attention on the AUC, and 3) the effects of 

stimulus and task conditions on the AMI of the AUC. The within-subject factors included 

attention (valid, neutral, or invalid, with respect to the match between the precue and response 

cue), stimulus strength level, and visibility report type (of the overall stimulus vs. the task-

relevant feature). The between-subjects factors included experimental site (BU vs. UCI) and 

experiment (1-4). When applicable, experiment was factorized into stimulus type (gratings vs. 

texture-defined figures) and task type (threshold detection vs. suprathreshold visibility 

comparison). All statistical tests were two-sided. Effect sizes are reported as generalized eta-

squared. When Mauchly’s test indicated violations of sphericity assumptions114, we confirmed 

that all significant F tests remained significant after Greenhouse-Geisser correction115, with the 

estimated degree of sphericity violation reported as epsilon (𝜀). Planned analyses were 

conducted per experiment. Planned comparisons were made between stimulus types, task 

types, visibility report types, and all pairs of cueing validity and stimulus strengths, when 

applicable.  
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Supplementary Information  

 

Supplementary Figures 

 

Supplementary Figure 1. Detailed task timeline for figure-ground experiments. Expansion of Figure 
1, to detail the trial sequence of the experiments featuring texture-defined figure-ground stimuli 
(Experiments 3 and 4). Each trial was initiated by a fixation check. From fixation until the offset of the 
target stimuli, the central fixation cross, attentional precues, and inactive cues were presented in a 
circular gray aperture 4° in diameter. The circular aperture was placed atop a random texture composed 
of lines of different orientations and lengths until target onset. The target display was divided into 
quadrants. Each quadrant was filled with a unique “background” texture, composed of lines of a single 
orientation (-45° or +45°) and length, in which an oval “figure” delineated by orthogonal lines could appear 
(Experiment 3) or always appeared (Experiment 4).  
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Supplementary Figure 2. Reaction times. In all experiments, reaction times were fastest on trials when 
attention was validly cued (blue), intermediate when it was distributed neutrally (gray), and slowest when 
it was invalidly cued (red). Thus attentional benefits to performance were not driven by speed-accuracy 
tradeoffs. Data (total n=120; Experiments 1-3 each n=30, Experiment 4 n=29) are presented as mean 
values ±1 SEM. 
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Supplementary Figure 3. Discrimination performance conditioned on subjective visibility in the 
detection experiments. Experiment 1 (top) and 3 (bottom). The attentional cue modulated performance 
even when the stimuli were reported as unseen. *p<0.05, **p<0.01, ***p<0.001. Data (total n=60; 
Experiments 1 and 3 each n=30) are presented as mean values ±1 SEM. 
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Supplementary Figure 4. Hit and false alarm rates for threshold figure-ground experiment. In the 
figure-ground experiment, line lengths were matched between target present and absent conditions, 
allowing hits and false alarm rates to be estimated separately at each stimulus strength. Inattention (red) 
both decreased hit rates (i.e., reports of seeing a texture-defined figure when there was one; solid lines) 
except at the lowest line length and increased false alarm rates (i.e., reports of seeing a texture-defined 
figure when there was none; dashed lines). These patterns were consistent whether the subjective report 
pertained to detection of any figure within the texture (left) or detection of a particular figure feature (the 
oval orientation; right). Group means are fit with Weibull functions for visualization. Data (Experiment 3 
n=30) are presented as mean values ±1 SEM.  
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Supplementary Figure 5. Signal detection theory measures. a) Sensitivity (d’) in detecting gratings 
(top) and texture-defined figures (bottom) increased with stimulus strength and with attention (valid = 

blue, neutral = gray, invalid = red). b) Criterion (𝑐YN) was more liberal for reports of seeing an overall 

stimulus (dashed lines) than reports of seeing a particular stimulus feature (orientation, solid lines). 
Although participants were more conservative in reporting they saw the task-relevant feature than the 
overall stimulus, detection sensitivity was interestingly similar for the two subjective report types. At 
matched stimulus strengths, the influence of attention on criterion was strength-dependent: attention 
induced a more conservative criterion at lower stimulus strengths, but a more liberal criterion at higher 
stimulus strengths. See the main text and Supplementary Note 2 for an argument that these changes in 
criterion are driven by changes in d’. c) At matched performance, the effect of attention was to 
consistently induce a conservative criterion. d) Here for comparison to the p(seen) vs. p(correct) plots in 
Figure 2c and Figure 3c, we plot signal detection sensitivity for detection vs. discrimination. Detection 
sensitivity—the ability to distinguish when the target was present vs. absent—was not systematically 
higher for unattended trials at matched discriminabilities across experiments. Data (total n=60; 
Experiments 1 and 3 each n=30) are presented as mean values ±1 SEM. Horizontal and vertical error 
bars in panel d indicate SEMs for discrimination and detection d’ respectively.  
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Supplementary Figure 6. Unequal variance signal detection theory measures. The effects of 
stimulus strength and attention on the unequal variance measures of a) detection sensitivity da and b) 
criterion ca were consistent with their effects on the equal variance signal detection measures 
(Supplementary Figure 5). That is, attention increased sensitivity across all stimulus strengths, but 
differentially impacted criterion, depending on stimulus strength. c) The slopes of the 𝑧ROC did not 

deviate substantially from 1, indicating equal variance assumptions were not violated in most cases, apart 
from at the highest stimulus strengths. Data (total n=60; Experiments 1 and 3 each n=30) are presented 
as mean values ±1 SEM.  
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Supplementary Figure 7. Consistency of inattentional inflation across participants. Each dot shows 
an individual participant’s AUC calculated from trials in which the attention cue was invalid (y-axis) vs. 
valid (x-axis). For most participants, the AUC for stimulus visibility (light green) was larger when the cue 
was invalid (i.e., above the unity line), indicating inattentional inflation. The AUC for feature visibility (dark 
green) was also larger under inattention for most participants, but only in Experiments 1 and 3 in 
threshold regimes.  
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Supplementary Figure 8. AMI of AUC replicated across analytic pipelines. The attentional 
modulation index of the AUC, quantifying the degree and direction with which objective and subjective 
reports dissociate with attention, as analyzed by two separate analytic pipelines, developed 
independently at the two study sites, BU (top) and UCI (bottom). AMIs greater than zero indicate 
inattentional inflation and less than zero indicate inattentional deflation. AMIs did not significantly differ by 
pipeline (all p>0.657, Supplementary Table 16). Thus, all measures of inattentional inflation were 
simultaneously replicated by two independent analytic pipelines and robust to any idiosyncrasies within 
pipelines. Data (total n=118; Experiments 1-3 each n=30 per experiment, Experiment 4 n=28) are 
presented as mean values ±1 SEM.  
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Supplementary Notes 

 

Supplementary Note 1 

This experiment was conceived as part of an adversarial collaboration between first-order and 

higher-order theories of consciousness, as described in the preregistration50. The specific 

theories under consideration were Recurrent Processing Theory42 (RPT), a first-order theory, 

and two higher-order theories: Perceptual Reality Monitoring theory36 (PRM) and Higher-Order 

Representation of a Representation theory34,35 (HOROR).  

The full adversarial collaboration includes two suites of experiments, involving subjective 

inflation and change blindness, each with two phases: psychophysics and fMRI. The current 

manuscript describes the outcomes of the psychophysics phase of the subjective inflation 

experiments. As described in the preregistered predictions table50, only the fMRI phase has the 

potential to pose a serious challenge to one theory that would require a revision of the theory—

denoted as a “fail” outcome in the predictions table. However, the theorists representing each 

theory also made predictions for the behavioral phase. Here, predictions unsupported by 

experimental outcomes would prompt reconsideration of some aspect of the theory but would 

not invalidate a core theoretical component—denoted as a “challenge” outcome in the 

predictions table. 

The theorists representing the higher-order theories tested here (PRM and HOROR) predicted 

that the behavioral experiments would show inattentional subjective inflation. An outcome in 

which no behavioral experiment showed inflation would have challenged the higher-order 

theories by invalidating a motivating pillar of these theories. If inflation had not been supported 

in the current rigorous test, it would have undermined the idea that subjective experience 

regularly exceeds objective performance, reducing the empirical basis for the theoretical 

separation of sensory processing and conscious experience inherent to higher-order theories. 

The theorist representing the first-order theory tested here (RPT) predicted in contrast that the 

behavioral experiments would not show inattentional subjective inflation. This prediction 

stemmed from the absence of a mechanism within RPT to generate inflation: in RPT, recurrent 

sensory processing is proposed to generate both conscious experience and performance in 

sensory tasks. However, given that inflation can in principle be generated by first-order signal 

detection models (see Discussion), a behavioral finding of inflation would not invalidate a core 

theoretical component of RPT. Rather, the current findings of robust inflation prompt RPT and 

other first-order theories to develop or incorporate more explicit mechanisms to account for 

decouplings of objective and subjective reports. 
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Supplementary Note 2 

Overview of the criterion analysis of Figure 4 

In Figure 4a, we plot the difference between detection criteria for attended and unattended trials 

as a function of stimulus strength, following the similar analysis in Figure 2b of Rahnev et al.21 

for their Experiment 2. Rahnev et al.21 probed detection of peripherally presented gratings at 

four levels of near-threshold grating contrast when these stimuli were either validly or invalidly 

cued, making their experimental design similar to that of our Experiment 1. The results in our 

Figure 4a replicate those of Rahnev et al.'s21 Figure 2b in showing that 1) detection criteria for 

peripheral gratings are higher (more conservative) for attended trials than for unattended trials 

at low grating contrasts, and 2) the difference between criteria for attended vs. unattended trials 

decreases as grating contrast increases. Moreover, our results confirm a prediction made by 

Rahnev et al.'s21 computational model of their data by showing that if high enough contrasts are 

probed, the criterion difference reverses, such that detection criteria are increasingly lower 

(more liberal) for attended trials as contrast increases—though that study did not note that 

prediction and instead focused on the finding that attention induces conservative detection 

criteria. We also extend the results of Rahnev et al.21 by 1) showing these criterion patterns hold 

not just for stimulus detection (i.e., reporting that a grating was visible), but also for feature 

detection (i.e., reporting that the grating's tilt was visible); and 2) showing that the same patterns 

for stimulus and feature detection criteria hold for texture-defined ovals (Experiment 3). 

Distinguishing the criterion in yes-no discrimination tasks vs. two-response classification tasks 

The analysis of Figure 4a requires important conceptual context. Our Experiment 1 uses a 

detection task featuring a single set of target-absent trials (corresponding to grating contrast = 

0) and multiple sets of target-present trials (corresponding to contrasts > 0). The observer must 

provide two binary classifications for each stimulus, corresponding to stimulus detection (“saw 

grating” vs. “did not see grating”) and feature detection (“saw grating tilt” vs. “did not see grating 

tilt”). For simplicity, in the following discussion we will consider only the stimulus detection task, 

but all considerations similarly apply to modeling the feature detection task. In signal detection 

theory (SDT), the stimulus detection task of Experiment 1 is treated as a two-response 

classification task61 in which the observer sets a single criterion on a decision axis to classify 

more than two stimulus categories (here, target-absent trials and target-present trials at multiple 

contrasts) into two classes.  

Importantly, the criterion in two-response classification tasks is computed and interpreted 

differently from the criterion used to model the more common yes-no discrimination task61. Here 

we clarify this distinction to prevent potential confusions that might arise from failing to do so, 

and to facilitate correct interpretation of our analysis in Figure 4a. 

In the yes-no discrimination task, the observer is presented with a stimulus from one of two 

stimulus categories (e.g., target-absent and target-present) and must provide a binary 

classification (e.g., “yes, saw target” or “no, did not see target”). In the yes-no SDT model, the 

two stimulus categories generate normal distributions of evidence along some decision axis. 

The observer sets a criterion on the decision axis such that they respond “yes” for any trial 

yielding evidence that surpasses the criterion, and “no” otherwise. Let us call the criterion for the 

yes-no discrimination task the yes-no criterion, or 𝑐YN. Its formula is given by 
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𝑐YN = −0.5 (𝑧(𝐻) + 𝑧(𝐹)) (S1) 

where 𝐻 and 𝐹 correspond to hit rate and false alarm rate, respectively, and 𝑧 is the inverse of 

the normal CDF. 𝑐YN is measured relative to a coordinate system whose zero occurs at the 

location on the decision axis where the two stimulus distributions intersect (i.e., have equal 

likelihood). This is a point of zero response bias in the sense that setting the criterion here yields 

an equal error rate for “yes” and “no” responses (i.e., equal false alarm rate and miss rate). It 

follows that the sign of the yes-no criterion can be interpreted in terms of bias in the decision-

making strategy. Setting the criterion above the zero-bias point (𝑐YN > 0) is a conservative 

strategy that prioritizes decreasing false alarm rate at the expense of increasing miss rate, 

whereas setting it below the zero-bias point (𝑐YN < 0) is a liberal strategy that prioritizes 

decreasing miss rate at the expense of increasing false alarm rate. 

The SDT model of the two-response classification task is identical to that of the yes-no task, 

except that there are more than two stimulus distributions. It follows that for this model, there is 

not a unique zero-bias point. Every possible pairing of stimulus distributions yields a different 

location at which the paired distributions intersect, and these correspond to different zero-bias 

points that are specific to each pairing. It follows that the criterion used to model such tasks, the 

two-response classification criterion or 𝑐2RC, cannot be computed and interpreted relative to a 

zero-bias point in a way analogous to the yes-no criterion; instead, a new choice must be made 

for the zero of the measurement scale. One reasonable approach is to compute the location of 

𝑐2RC relative to the mean of the noise distributiona: 

𝑐2𝑅𝐶 = −𝑧(𝐹) (S2) 

Whatever convention for the zero point is chosen, the sign of 𝑐2RC cannot be interpreted as 

reflecting bias in the decision-making strategy in the same way as 𝑐YN. 

Interpreting yes-no criterion effects in Experiment 1 

Bearing these distinctions between 𝑐YN and 𝑐2RC in mind, we nonetheless chose to analyze the 

criterion for the two-response classification task of Experiment 1 using a yes-no analysis 

framework. We explain the rationale for this choice in the following section; here, we examine 

why this choice leads to results for Experiment 1 that are trivial and potentially misleading if not 

properly understood. 

Applying a two-response classification SDT model to Experiment 1 would involve computing a 

single 𝑐2RC value for each attention condition of each participant, where this value corresponds 

to the single criterion that determines stimulus detection responses for all stimuli. Instead, for 

each attention condition of each participant, we applied the yes-no discrimination SDT model 

 
a Technically, a two-response classification task does not necessarily have to include target-absent or 

“noise” trials. In this case, the criterion could be computed relative to the mean of the weakest stimulus 
distribution, with p(“yes”) for these stimuli being the analogue of false alarm rate. 
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separately for all possible pairings of the target-present trials at each level of contrast with the 

common set of target-absent trials. This yielded separate values of 𝑐YN at every contrast. We 

observed that 𝑐YN decreased with contrast (Supplementary Figure 5b), and that the rate of this 

decrease depended on attention (Figure 4a). 

Taken at face value, this would seem to suggest that participants employed an increasingly 

liberal criterion-setting strategy as contrast increased, and that this criterion setting effect was 

modulated by attention. However, this cannot possibly be the case, since each 𝑐YN within an 

attention condition is computed from the same false alarm rate arising from the same set of 

target-absent trials, and therefore must correspond to the same criterion, i.e., the fixed two-

response classification criterion. This single underlying criterion is assigned different values in 

the pairwise yes-no analyses due to the fact that the zero-bias point for a given pairing of noise 

and signal distributions (i.e., the location where they intersect) differs for each level of contrast 

(Supplementary Figure 9). As contrast increases, so does the mean of the corresponding 

target-present distribution, causing a rightward shift in the zero-bias point and a corresponding 

decrease in the computed value for 𝑐YN. Thus, within each attention condition, the observer sets 

only one criterion which applies across all contrasts (fixed 𝑐2RC), and this single criterion exhibits 

different relationships to the zero-bias point for each pairing of noise and signal distributions 

(yielding different 𝑐𝑌𝑁 values)—but these do not reflect substantive changes in criterion setting 

per se. 

 

Supplementary Figure 9. Signal detection theory (SDT) analysis schematic. Schematic for SDT 
analysis of a two-response classification task with one set of target-absent trials (corresponding to the 

noise distribution 𝑁) and two sets of target-present trials with different stimulus strengths (corresponding 

to the signal distributions 𝑆1 and 𝑆2). A single two-response classification criterion 𝑐2RC determines one 

false alarm rate from 𝑁 and two hit rates from 𝑆1 and 𝑆2, respectively. However, when SDT analysis for a 

yes-no discrimination task is conducted separately for each stimulus strength, it yields two different values 

(𝑐YN1 and 𝑐YN2) for the location of the same underlying criterion 𝑐2RC. These values differ because the 

yes-no criterion is measured relative to the location where the noise and signal distributions intersect, and 
this zero-bias point depends on the mean of the signal distribution, which changes with signal strength 

(compare the red and blue axis coordinates derived from 𝑆1 and 𝑆2, respectively). Here, these different 

coordinate systems render 𝑐2RC as positive (i.e., conservative) in 𝑐YN1 and as negative (i.e., liberal) in 

𝑐YN2. As the signal distribution mean increases, the zero-bias point shifts rightwards, leading to 

increasingly negative values for the yes-no criterion 𝑐YN despite the underlying two-response 

classification criterion 𝑐2RC being fixed. Thus, although measurements for 𝑐YN become more negative as 

stimulus strength increases, this is best understood not as an actual shift in criterion setting per se, but 

rather as a systematic change in how the fixed criterion 𝑐2RC relates to the changing zero-bias point as 

sensitivity increases.  
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Because these changes in 𝑐YN are driven entirely by changes in signal distribution mean, there 

is a simple relationship between 𝑐YN and sensitivity (d’). With every unit increase in d’, the zero-

bias point shifts rightwards by 0.5 units (since it is located at the mean of the noise and signal 

distribution means). This entails that 𝑐YN is linearly related to d’ with a slope of -0.5 

(Supplementary Figure 5c, top row). As a consequence, changes in 𝑐YN with contrast trivially 

reflect changes in d’ with contrast (compare blue plots in Figure 4 panels a and b; also top row 

of Supplementary Figure 5 panels a and b). Thus, in two-response classification tasks, not 

only do changes of 𝑐YN with contrast not reflect changes in criterion setting, in fact they are best 

understood as sensitivity effects insofar as they indirectly reflect changes in d’. Likewise, the 

decreasing difference between 𝑐YN for attended and unattended trials with increasing contrast 

(Figure 4a, blue plots) does not reflect an attentional modulation of criterion setting across 

contrasts, but rather reflects that d’ increases more rapidly with contrast for attended stimuli 

(Figure 4b, blue plots).  

Interpreting yes-no criterion effects in Experiment 3 and Rahnev et al. (2011) 

If the 𝑐YN results for Experiment 1 do not inform us about criterion setting but rather are trivial 

reflections of the effects of contrast and attention on d’, what motivates using the yes-no 

analysis framework here? The answer is that this analysis as applied to Experiment 1 provides 

a benchmark for comparison to the 𝑐YN results of our Experiment 3 and Rahnev et al.’s21 

Experiment 2. For reasons discussed below, the 𝑐𝑌𝑁 analysis is not trivial a priori for either of 

these experiments. However, if these experiments nonetheless exhibit patterns in the 𝑐YN 

results similar to Experiment 1, this would suggest that the findings of these experiments might 

best be interpreted in a similar way—i.e., as reflecting not criterion-setting effects per se, but 

rather sensitivity effects. 

Although the stimulus detection task for texture-defined oval stimuli in Experiment 3 is 

structurally similar to the task of Experiment 1 in many ways, for the purposes of the present 

discussion there is an important difference. In Experiment 3, the presence or absence of the 

oval is determined by line orientation, which is independent of the stimulus strength 

manipulation of line length. It follows that each level of line length has its own set of target-

absent trials (all lines parallel) and target-present trials (figure lines orthogonal to ground lines). 

These data are most naturally analyzed not with a two-response classification SDT model as in 

Experiment 1, but rather with separate yes-no SDT models applied to each line length. Because 

the yes-no SDT analyses conducted at each line length do not use a common set of target-

absent trials, it is not necessarily the case that the 𝑐YN computed at each line length merely 

reflects a single underlying criterion measured relative to different coordinate systems, as is the 

case in Experiment 1. Rather, they may reflect real changes in criterion setting induced by 

perceptible changes in line length. 

However, false alarm rates in Experiment 3 exhibited only slight changes as a function of line 

length (Supplementary Figure 4), approximating the constant false alarm rate from the 

common set of stimulus-absent trials in Experiment 1. This implies that changes in 𝑐YN as a 

function of line length were driven primarily by changes in hit rate, i.e., by changes in the mean 

of the signal distribution with stimulus strength—again approximating the sensitivity-driven 

effects in Experiment 1. These patterns in the Experiment 3 data resulted in criteria being very 

nearly linear with sensitivity and with a slope of approximately -0.5 (Supplementary Figure 5c, 

bottom row), in close approximation to the (trivially) perfectly linear psychometric functions of 

slope -0.5 in Experiment 1 (Supplementary Figure 5c, top row).  
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These data suggest that although the 𝑐YN patterns in Experiment 3 are not trivial a priori as they 

are in Experiment 1, nonetheless they closely approximate the patterns in Experiment 1 and 

therefore may be best understood in the same way—i.e., as reflecting effects of attention on 

sensitivity, not criterion setting. On this interpretation, the observer sets a fixed criterion for all 

line lengths within an attention condition. Provided that the means and variances of the noise 

distributions are roughly constant across line lengths, this fixed criterion would yield 

approximately constant false alarm ratesb and increasing hit rates across line lengths. This 

would create a situation similar to that of the two-response classification task, where 𝑐YN values 

decrease with stimulus strength as a side-effect of the zero-bias point increasing with d’ despite 

the underlying criterion being fixed (Supplementary Figure 9). 

Experiment 2 of Rahnev et al.21 used a grating detection task similar to our Experiment 1, which 

we argued above is best modeled as a two-response classification task. However, there is an 

important difference in how these two experiments were conducted. In our Experiment 1, target-

absent trials and target-present trials of all contrasts were interleaved randomly across trials. In 

Rahnev et al.’s21 Experiment 2, each block of trials contained a mix of target-absent trials and 

target-present trials of a fixed contrast; grating contrast varied across but not within different 

blocks. This design provides a natural way to pair separate sets of target-absent trials with 

target-present trials at each contrast, which justifies treating the data as a series of independent 

yes-no tasks at each contrast rather than as an omnibus two-response classification task using 

a common set of target-absent trials. In turn, this structure allows for the possibility that changes 

in 𝑐YN with contrast reflect real changes in criterion setting. For instance, observers might adjust 

their detection criterion in each block due to perceptible differences in grating contrast. 

Nonetheless, Rahnev et al.21 observed that false alarm rates for attended and unattended 

stimuli were roughly constant across contrasts (their Supplementary Figure 4), suggesting that 

the effects of contrast and attention on 𝑐YN they observed (their Figure 2b) may be better 

understood as an indirect reflection of effects of contrast and attention on d’, per the above 

considerations. 

In fact, this idea is well accommodated by the analysis of Rahnev et al.21 Although they 

analyzed their empirical data in terms of 𝑐YN effects, they proposed a deeper computational 

model that explains the data in terms of how attention influences sensitivity, not criterion. 

According to their model, attention both boosts signal magnitude and decreases the variance of 

perceptual evidence. Under the assumption that the same criterion is used for attended and 

unattended stimuli, this model predicts that false alarm rates are higher under inattentionc. 

Provided that the model parameters are tuned in the appropriate way, the model can yield a 

higher 𝑐YN value for attended stimuli at low stimulus strengths, in agreement with empirical data. 

Furthermore, given the model assumptions that 1) the distribution means for unattended stimuli 

increase more slowly with stimulus strength than those for attended stimuli and 2) the 

distribution variances for unattended stimuli are always higher than variances for attended ones 

at each stimulus strength, it follows that sensitivity (d') increases with stimulus strength more 

slowly for unattended stimuli. The model’s assumption of a fixed criterion entails that 𝑐YN 

decreases with stimulus strength for all attention conditions, and its prediction that d’ increases 

 
b The slight increase in stimulus detection false alarm rates with line length (Supplementary Figure 4, 

left panel) could arise from a fixed criterion if the mean and/or variance of the noise distributions 
increases slightly with line length. 
c Provided that the criterion location exceeds the mean of the noise distribution, i.e., provided that false 

alarm rates are less than 0.5. 
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with stimulus strength more slowly for unattended stimuli entails that the decrease of 𝑐YN with 

stimulus strength will correspondingly be slower for unattended stimuli. The slower rate of 

decrease for 𝑐YN under inattention entails that the difference between criteria for attended and 

unattended stimuli decreases as stimulus strength increases from low levels, eventually yielding 

a crossover such that 𝑐YN is lower for attended stimuli at high enough stimulus strengths. This is 

consistent with the pattern in our data (Figure 4a) as well as Rahnev et al.'s21 data (their Figure 

2b) and model fits (their Supplementary Figure 6b, where the model's predicted crossover 

begins to emerge at the highest plotted stimulus strength, in a straightforward extrapolation of 

the patterns observed at lower stimulus strengths.) 

Since Rahnev et al.’s21 experiment used low-contrast gratings, their empirical results stopped 

just short of exhibiting this crossover effect and their interpretation emphasized the effect of 

attention on making 𝑐YN conservative at low stimulus strengths. However, importantly, their 

computational model explained these patterns in 𝑐YN as arising from processes best captured 

by a more complex SDT-based model in which criterion is fixed and attention modulates 

sensitivity via effects on signal strength and variance. Thus, their modeling approach aligns with 

the above considerations that these patterns are best understood as effects of stimulus strength 

and attention on sensitivity rather than criterion-setting.  

Although Rahnev et al.21 modeled a single fixed criterion across all stimulus strengths and 

attention conditions, their data and ours could also be consistent with a criterion that is fixed 

across stimulus strengths within each attention condition, but varies with attention69. The 

present dataset will provide an opportunity for further testing and development of SDT models to 

better understand how attention interacts with perception and perceptual decision making. 
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Supplementary Note 3 

Here, we include discussion of one author’s (B.M.’s) experiences of this task that may suggest 

an alternative framing for subjective inflation. We include these observations as they may be 

helpful in informing future research—both theoretical and empirical.  

Subjective inflation is typically framed as the surprising and unintuitive finding that, for matched 

levels of feature discrimination performance, subjective visibility is higher when not attending to 

the stimulus. However, turning this framing on its head yields the potentially more intuitive idea 

that, at matched levels of subjective visibility, feature discrimination performance is higher when 

attending to the stimulus. The general idea that strong overall visibility does not necessarily 

entail fine perceptual discrimination is familiar from the everyday observation that stimuli 

perceived in the visual periphery can feel highly prominent and yet elude attempts to discern 

fine-grained stimulus features. This suggests a more general principle that in impoverished 

viewing conditions, the subjective experience of perceptual prominence does not necessarily 

guarantee the subjective experience of perceptual sharpness.d It is perhaps not so 

counterintuitive to suppose that this principle might apply to cases of inattention, making fine 

discrimination of a strongly visible unattended stimulus more difficult than it would be for a 

similarly visible attended stimulus. 

This framing accords well with the subjective experience of one of the authors (B.M.) when 

testing the task for suprathreshold texture-defined ovals (Experiment 4). Considering trials 

where attended and unattended stimuli appeared similar to the reference strength and thus had 

similarly strong levels of overall “pop-out” from the background (i.e., similar levels of "perceptual 

prominence"), this matched level of stimulus visibility did not feel nearly as useful for making fine 

discrimination judgments about the orientation of its nearly circular shape in the absence of 

attention (i.e., different levels of "perceptual sharpness"). This difference stood out as being 

strikingly obvious at the single trial level in a way that was not the case for the threshold stimuli. 

This is likely due to the fact that, to achieve threshold discrimination performance for clearly 

visible suprathreshold stimuli, the differences in stimulus features to be discriminated must be 

far more subtle than they are for stimuli near the detection threshold, which has the effect of 

making discrimination for suprathreshold stimuli feel far more challenging. This configuration 

maximizes the contrast between these dissociable aspects of perception, with detection being 

very easy and discrimination being very hard, which in turn may be a formula for making 

inflation effects stand out as much as possible. The net effect of all this was to make inflation 

effects (framed as inattentional deficits in feature discrimination for matched-visibility stimuli) 

seem obvious to the author at the single-trial level in a way that felt analogous to how one can 

clearly detect an object in the visual periphery and yet struggle to discern its fine-grained 

features. 

 
d “Perceptual prominence” and “perceptual sharpness” are introduced here as terms to refer to 

phenomenological aspects of visual experience that are familiar from everyday life. The subjective reports 
participants made about seeing the stimulus (Experiments 1 and 3) or judging stimulus strength relative to 
a reference (Experiments 2 and 4) can be seen as operationalizations of the participants’ experiences of 
the perceptual prominence of the response-cued stimuli in these experiments, and similarly reports about 
seeing stimulus features (Experiments 1, 2, and 3) can be seen as operationalizations of their 
experiences of the perceptual sharpness of these stimuli. These phenomenological and operational 
concepts are distinct from, but related to, the computational concepts of signal strength and signal-to-
noise ratio in the model discussed below. 
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Of course, this anecdotal experience is entirely consistent with the data analyzed in the main 

manuscript, taking "perceptual prominence" and "perceptual sharpness" to correspond to overall 

stimulus visibility and feature visibility, respectively. Consider the plot of subjective stimulus 

visibility vs. objective feature discrimination performance for Experiment 4 (Figure 2c, bottom 

panel). Taking any horizontal slice through this plot shows that at matched levels of subjective 

visibility, discrimination performance is considerably higher when the stimulus is attended than 

when unattended. Although feature visibility data were not collected for Experiment 4, feature 

visibility data for Experiment 2 (which used suprathreshold gratings) were closely related to 

discrimination accuracy in a way that did not depend on attention (Figure 3c, middle panel). 

Provided that feature visibility data in Experiment 4 would have been similar, these results jointly 

demonstrate that for matched levels of overall stimulus visibility for suprathreshold stimuli, 

subjective feature visibility (and objective feature discrimination) is considerably higher under 

attention. 

The motivation for including this anecdotal report is not the experienced phenomena per se, as 

these are entirely consistent with effects already demonstrated or suggested in the data. Rather, 

what is notable is the force with which single trial observations of suprathreshold inflation stimuli 

suggested to the author how this alternative framing of inflation effects naturally and intuitively 

accords with similar experiences familiar from everyday, suprathreshold vision—contra the 

typical framing of inflation effects as unintuitive and surprising. It is possible that deeper 

consideration of this alternative framing could lead to insightful new research angles and 

perhaps stimulate new paradigms for understanding inflation effects and their relationship to 

similar phenomena in everyday suprathreshold vision. 

This framing accords well with the signal detection model of Rahnev et al.21 As explained in 

greater detail in the Discussion and in Supplementary Note 2, this model explains inflation 

effects as resulting (in part) from higher levels of noise in perceptual representations of 

unattended stimuli. At matched levels of signal-to-noise ratio (and so, matched levels of 

objective performance), the noisier perceptual evidence for unattended stimuli has higher 

overall magnitude (and so higher subjective visibility). But turning this framing on its head per 

the above, the model also predicts that at matched levels of subjective visibility, perceptual 

evidence for unattended stimuli has similar overall magnitude to those of attended stimuli but is 

noisier, leading to lower signal-to-noise ratio for feature discrimination and thus poorer 

discrimination performance. 

The dissociable mechanisms of overall evidence magnitude and signal-to-noise ratio in the 

model suggest an analogy with the dissociable subjective experiences of perceptual 

prominence and perceptual sharpness discussed above. Perceptual prominence maps naturally 

onto evidence magnitude, as both are magnitude-based concepts. Perceptual sharpness might 

also seem to map naturally onto signal-to-noise ratio as both are precision-based concepts, but 

further consideration raises some complexities. The signal detection model attributes feature 

detection reports to perceptual evidence exceeding a feature detection criterion, and so would 

seem to associate perceptual sharpness with evidence magnitude rather than signal-to-noise 

ratio per se. Additionally, signal-to-noise ratio in signal detection theory (SDT) pertains to signal 

precision across trials, whereas perceptual sharpness pertains to the precision of subjective 

experience for a single percept (a within-trial phenomenon), and SDT does not model within-trial 

noise.  
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Despite these conceptual and computational distinctions, it may be the case that within-trial 

perceptual sharpness and across-trial signal-to-noise ratio are closely related for suprathreshold 

stimuli, as we observed that in this regime reports of feature detection were closely correlated 

with objective feature discrimination performance in a way that was not modulated by attention 

(Figure 3c, middle panel). Ideally, a model of these phenomena would capture this empirical 

relationship while simultaneously resolving the associated conceptual and computational 

tensions noted above. For instance, such a model might link perceptual sharpness to within-trial 

uncertainty in perceptual processing, and in turn link this within-trial uncertainty to across-trial 

signal-to-noise ratio and thus objective discrimination performance. Alternatively, if one accepts 

that perceptual sharpness can be adequately characterized as a magnitude-based concept, or 

provides an account of how evidence magnitude and within-trial uncertainty are linked, then 

principles from the signal detection model of Rahnev et al.21 might be sufficient to characterize 

our findings in the suprathreshold stimulus experiments without raising these conceptual 

tensions. One natural way to link evidence magnitude to within-trial uncertainty in SDT is via the 

likelihood ratio between the signal and noise distributions occurring at a given value of evidence 

magnitude, as evidence associated with a higher likelihood ratio entails better differentiation 

between signal and noise. However, the Rahnev et al.21 model posits that decision criteria apply 

to raw evidence magnitude despite the likelihood ratio of these magnitudes differing across 

attention conditions, which raises complications for linking the two. 

Although the modeling ideas discussed above may have intuitive appeal, a more definitive 

account would require extending any candidate model to simultaneously account for stimulus 

detection (related to “perceptual prominence”), feature detection (related to “perceptual 

sharpness”), and objective discrimination performance across all levels of attention and stimulus 

strength, and demonstrating that the model in question can account for the data well while also 

outperforming competing models. 
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Supplementary Methods 

Task instruction excerpts 

Experiment 1: Threshold detection of gratings 

In this experiment you will be asked to make judgments about visual stimuli. Specifically, you will be pointed or “cued” 

to a particular location on the screen and will have to respond: 

1. Did you see a grating embedded in the noise patch in the cued location? 

2. If yes, did you see what direction the grating was oriented? 

3. Was the grating oriented counterclockwise (-45 deg) or clockwise (+45 deg) from vertical? 

We ask separate questions about whether you saw a grating and whether you saw its orientation because sometimes 

you may clearly see some kind of grating in the noise, without being able to see clearly the exact orientation of this 

grating. 

About the “saw grating” / “saw orientation” judgments 

When we ask about whether you saw a grating and its orientation, we’re interested to know about what your 

actual visual experience was like. Did it actually look like there was a grating embedded in the noise patch in the 

response-cued location? If so, could you actually see whether the grating was oriented counterclockwise or 

clockwise from vertical? 

Don’t try to answer this question based on any information other than what your actual visual experience of the 

patch was like. 

About the “counterclockwise” / “clockwise” judgment: 

Sometimes you may not be very sure whether the grating was oriented counterclockwise or clockwise from 

vertical. This may be especially the case when you didn’t see a grating to begin with! 

On trials where the response-cued quadrant didn’t contain a grating to begin with, obviously the 

counterclockwise / clockwise judgment has no meaning. However, just because you didn’t see a grating doesn’t 

mean there wasn’t one there! In cases where a grating was objectively present but you didn’t see it, the 

orientation judgment is still meaningful and your response may be meaningful too, even if it “feels” like a wild 

guess. 

For this reason, we ask that you take the counterclockwise / clockwise question seriously on each trial and give 

the best response you can, even when you didn’t see a grating. On such trials, try to make the orientation 

judgment *as if* a grating had been presented but you just didn't see it. If you’re not sure about the grating’s 

orientation, just make your best gut instinct guess without spending too much time deliberating. 

If you have to guess, it’s important that you don’t guess based on a strategy (like always responding the opposite 

of what you chose last, or always responding “counterclockwise”). Try to keep your “counterclockwise” and 

“clockwise” guesses roughly balanced, based on your best hunch. If you have no idea at all, try to pick randomly, 

as if you were flipping a coin. 

Stimulus frequencies and dependencies 

Overall, each quadrant is equally likely to contain a grating. When a grating is present, it is equally likely to be 

oriented counterclockwise or clockwise from vertical. 

It is very important to note that grating presence and orientation in each quadrant is completely independent of 

grating presence and orientation in the other quadrants. In other words, knowing what was shown in one 

quadrant gives you no information whatsoever about what was shown in any other quadrant.  

As a consequence, your responses should always be based only on what you saw at the response-cued quadrant, 

and should never be influenced by what you saw at any of the quadrants that were not cued. 
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Supplementary Tables 

Supplementary  Table 1. Objective performance (related to Figure 2a). 

  Effect DFn DFd F p 𝜂𝐺
2  𝜀 p[GG] 

  All experiments               

1 Site 1 111 5.87 0.017 0.02 - - 

2 Exp 3 111 2.69 0.056 0.03 - - 

3 Strength 6 666 748.05 <0.001 0.61 0.48 <0.001 

4 Att 2 222 892.80 <0.001 0.52 0.70 <0.001 

5 Site:Exp 3 111 2.67 0.051 0.03 - - 

6 Site:Strength 6 666 0.18 0.983 <0.01 0.48 0.907 

7 Exp:Strength 18 666 13.79 <0.001 0.08 0.48 <0.001 

8 Site:Att 2 222 2.78 0.064 <0.01 0.70 0.084 

9 Exp:Att 6 222 14.78 <0.001 0.05 0.70 <0.001 

10 Strength:Att 12 1332 53.93 <0.001 0.08 0.75 <0.001 

11 Site:Exp:Strength 18 666 0.93 0.538 0.01 0.48 0.495 

12 Site:Exp:Att 6 222 0.48 0.820 <0.01 0.70 0.756 

13 Site:Strength:Att 12 1332 2.05 0.018 <0.01 0.75 0.032 

14 Exp:Strength:Att 36 1332 4.45 <0.001 0.02 0.75 <0.001 

15 Site:Exp:Strength:Att 36 1332 1.78 0.003 0.01 0.75 0.009 

  Experiment 1               

1 Site 1 28 0.17 0.681 <0.01 - - 

2 Strength 6 168 158.04 <0.001 0.62 0.56 <0.001 

3 Att 2 56 315.97 <0.001 0.64 0.69 <0.001 

4 Site:Strength 6 168 1.01 0.418 0.01 0.56 0.396 

5 Site:Att 2 56 1.65 0.202 <0.01 0.69 0.210 

6 Strength:Att 12 336 18.56 <0.001 0.16 0.61 <0.001 

7 Site:Strength:Att 12 336 1.54 0.109 0.02 0.61 0.154 

  Experiment 2               

1 Site 1 28 11.39 0.002 0.11 - - 

2 Strength 6 168 249.79 <0.001 0.72 0.30 <0.001 

3 Att 2 56 356.47 <0.001 0.70 0.63 <0.001 

4 Site:Strength 6 168 0.41 0.873 <0.01 0.30 0.645 

5 Site:Att 2 56 2.03 0.142 0.01 0.69 0.158 

6 Strength:Att 12 336 30.10 <0.001 0.19 0.55 <0.001 

7 Site:Strength:Att 12 336 3.35 <0.001 0.03 055 0.003 

  Experiment 3               

1 Site 1 28 0.60 0.445 <0.01 - - 

2 Strength 6 168 219.99 <0.001 0.74 0.38 <0.001 

3 Att 2 56 112.19 <0.001 0.37 0.62 <0.001 

4 Site:Strength 6 168 0.80 0.573 0.10 0.38 0.469 

5 Site:Att 2 56 0.73 0.487 <0.01 0.62 0.427 

6 Strength:Att 12 336 12.90 <0.001 0.01 0.62 <0.001 

7 Site:Strength:Att 12 336 1.48 0.131 0.01 0.62 0.173 

  Experiment 4               

1 Site 1 28 3.30 0.080 0.08 - - 

2 Strength 6 168 148.88 <0.001 0.33 0.39 <0.001 

3 Att 2 56 173.33 <0.001 0.38 0.75 <0.001 

4 Site:Strength 6 168 0.59 0.741 <0.01 0.39 0.587 

5 Site:Att 2 56 0.05 0.948 <0.01 0.75 0.904 

6 Strength:Att 12 336 7.80 <0.001 0.03 0.51 <0.001 

7 Site:Strength:Att 12 336 1.58 0.095 <0.01 0.51 0.154 

Factors of experiment, attention, and stimulus strength are abbreviated as “Exp,” “Att,” and “Strength.” The statistical tests used in 

this table were repeated measures ANOVAs. For all ANOVA tables, when Mauchly’s test indicated violation of sphericity, 

Greenhouse-Geisser epsilon and corrected p-values are shown. Significant p-values are bolded. 
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Supplementary Table 2. Objective performance for stimuli reported as “unseen” (related to 

Supplementary Figure 3). 

  Effect DFn DFd F p 𝜂𝐺
2  𝜀 p[GG] 

  Experiments 1 and 3               

1 Site 1 56 1.67 0.201 0.02 - - 

2 Expt 1 56 0.05 0.817 <0.01 - - 

3 Att 2 112 5.48 0.005 0.03 0.94 0.006 

4 Site:Expt 1 56 0.05 0.818 <0.01 - - 

5 Site:Att 2 112 2.27 0.108 0.01 0.94 0.112 

6 Expt:Att 2 112 0.41 0.664 <0.01 0.94 0.651 

7 Site:Expt:Att 2 112 2.72 0.070 0.02 0.94 0.074 
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Supplementary Table 3. Subjective reports of stimulus visibility (related to Figure 2b). 

  Effect DFn DFd F p 𝜂𝐺
2  𝜀 p[GG] 

  All experiments               

1 Site 1 111 0.13 0.720 <0.01 - - 

2 Exp 3 111 87.35 <0.001 0.52 - - 

3 Strength 6 666 544.71 <0.001 0.65 0.34 <0.001 

4 Att 2 222 82.33 <0.001 0.05 0.70 <0.001 

5 Site:Exp 3 111 0.19 0.902 <0.01 - - 

6 Site:Strength 6 666 0.57 0.753 <0.01 0.34 0.570 

7 Exp:Strength 18 666 34.72 <0.001 0.26 0.34 <0.001 

8 Site:Att 2 222 2.57 0.079 <0.01 0.70 0.099 

9 Exp:Att 6 222 25.78 <0.001 0.05 0.70 <0.001 

10 Strength:Att 12 1332 67.52 <0.001 0.05 0.53 <0.001 

11 Site:Exp:Strength 18 666 1.51 0.081 0.02 0.34 0.175 

12 Site:Exp:Att 6 222 3.22 0.005 <0.01 0.70 0.013 

13 Site:Strength:Att 12 1332 2.07 0.016 <0.01 0.53 0.050 

14 Exp:Strength:Att 36 1332 13.93 <0.001 0.03 0.53 <0.001 

15 Site:Exp:Strength:Att 36 1332 0.75 0.859 <0.01 0.53 0.769 

  Experiment 1               

1 Site 1 28 0.02 0.889 <0.01 - - 

2 Strength 6 168 168.54 <0.001 0.57 0.31 <0.001 

3 Att 2 56 98.32 <0.001 0.23 0.61 <0.001 

4 Site:Strength 6 168 0.11 0.998 <0.01 0.31 0.883 

5 Site:Att 2 56 8.13 0.001 0.02 0.61 0.005 

6 Strength:Att 12 336 24.87 <0.001 0.07 0.50 <0.001 

7 Site:Strength:Att 12 336 1.02 0.434 <0.01 0.50 0.416 

  Experiment 2               

1 Site 1 28 0.84 0.367 0.01 - - 

2 Strength 6 168 220.87 <0.001 0.81 0.28 <0.001 

3 Att 2 56 20.41 <0.001 0.02 0.81 <0.001 

4 Site:Strength 6 168 0.20 0.977 <0.01 0.28 0.783 

5 Site:Att 2 56 2.32 0.108 <0.01 0.81 0.119 

6 Strength:Att 12 336 22.76 <0.001 0.08 0.26 <0.001 

7 Site:Strength:Att 12 336 0.55 0.885 <0.01 0.26 0.660 

  Experiment 3               

1 Site 1 28 0.06 0.807 <0.01 - - 

2 Strength 6 168 171.40 <0.001 0.73 0.37 <0.001 

3 Att 2 56 22.98 <0.001 0.08 0.59 <0.001 

4 Site:Strength 6 168 1.34 0.240 0.02 0.37 0.269 

5 Site:Att 2 56 0.90 0.414 <0.01 0.59 0.368 

6 Strength:Att 12 336 17.98 <0.001 0.06 0.43 <0.001 

7 Site:Strength:Att 12 336 1.52 0.115 <0.01 0.43 0.185 

  Experiment 4               

1 Site 1 28 0.13 0.721 <0.01 - - 

2 Strength 6 168 102.84 <0.001 0.60 0.23 <0.001 

3 Att 2 56 2.29 0.111 0.01 0.79 0.124 

4 Site:Strength 6 168 2.65 0.018 0.04 0.23 0.102 

5 Site:Att 2 56 0.18 0.834 <0.01 0.79 0.782 

6 Strength:Att 12 336 46.17 <0.001 0.09 0.38 <0.001 

7 Site:Strength:Att 12 336 1.33 0.199 <0.01 0.38 0.259 
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Supplementary Table 4. Subjective reports of task-relevant feature visibility (related to Figure 3b). 

  Effect DFn DFd F p 𝜂𝐺
2  𝜀 p[GG] 

  All experiments               

1 Site 1 84 0.01 0.915 <0.01 - - 

2 Exp 2 84 11.92 <0.001 0.15 - - 

3 Strength 6 504 457.96 <0.001 0.53 0.36 <0.001 

4 Att 2 168 327.53 <0.001 0.27 0.63 <0.001 

5 Site:Exp 2 84 0.47 0.626 0.01 - - 

6 Site:Strength 6 504 0.37 0.888 <0.01 0.36 0.699 

7 Exp:Strength 12 504 7.15 <0.001 0.03 0.36 <0.001 

8 Site:Att 2 168 0.50 0.606 <0.01 0.63 0.523 

9 Exp:Att 4 168 13.83 <0.001 0.03 0.63 <0.001 

10 Strength:Att 12 1008 71.71 <0.001 0.06 0.48 <0.001 

11 Site:Exp:Strength 12 504 0.89 0.561 <0.01 0.36 0.480 

12 Site:Exp:Att 4 168 0.52 0.724 <0.01 0.63 0.641 

13 Site:Strength:Att 12 1008 0.80 0.654 <0.01 0.48 0.567 

14 Exp:Strength:Att 24 1008 7.81 <0.001 0.01 0.48 <0.001 

15 Site:Exp:Strength:Att 24 1008 1.35 0.120 <0.01 0.48 0.189 

  Experiment 1               

1 Site 1 28 0.56 0.461 0.83 - - 

2 Strength 6 168 209.62 <0.001 0.57 0.35 <0.001 

3 Att 2 56 136.45 <0.001 0.27 0.67 <0.001 

4 Site:Strength 6 168 1.07 0.385 <0.01 0.35 0.353 

5 Site:Att 2 56 2.12 0.130 <0.01 0.67 0.148 

6 Strength:Att 12 336 37.09 <0.001 0.01 0.45 <0.001 

7 Site:Strength:Att 12 336 1.19 0.287 <0.01 0.45 0.315 

  Experiment 2               

1 Site 1 28 0.19 0.669 <0.01 - - 

2 Strength 6 168 116.73 <0.001 0.41 0.25 <0.001 

3 Att 2 56 116.52 <0.001 0.39 0.59 <0.001 

4 Site:Strength 6 168 0.64 0.702 <0.01 0.25 0.493 

5 Site:Att 2 56 0.01 0.989 <0.01 0.59 0.941 

6 Strength:Att 12 336 21.46 <0.001 0.05 0.26 <0.001 

7 Site:Strength:Att 12 336 0.98 0.468 <0.01 0.26 0.408 

  Experiment 3               

1 Site 1 28 0.23 0.637 <0.01 - - 

2 Strength 6 168 153.98 <0.001 0.60 0.38 <0.001 

3 Att 2 56 101.66 <0.001 0.16 0.67 <0.001 

4 Site:Strength 6 168 0.57 0.751 <0.01 0.38 0.590 

5 Site:Att 2 56 0.03 0.972 <0.01 0.67 0.922 

6 Strength:Att 12 336 29.59 <0.001 0.06 0.59 <0.001 

7 Site:Strength:Att 12 336 1.37 0.178 <0.01 0.59 0.219 
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Supplementary Table 5. Stimulus detection sensitivity (related to Supplementary Figure 5a). 

  Effect DFn DFd F p 𝜂𝐺
2  𝜀 p[GG] 

  All experiments               

1 Site 1 56 1.40 0.241 0.01 - - 

2 Exp 1 56 2.81 0.099 0.03 - - 

3 Strength 6 336 350.59 <0.001 0.59 0.42 <0.001 

4 Att 2 112 296.54 <0.001 0.40 0.74 <0.001 

5 Site:Exp 1 56 <0.01 0.944 <0.01 - - 

6 Site:Strength 6 336 0.44 0.854 <0.01 0.42 0.693 

7 Exp:Strength 6 336 10.97 <0.001 0.04 0.42 <0.001 

8 Site:Att 2 112 0.35 0.703 <0.01 0.74 0.639 

9 Exp:Att 2 112 3.13 0.048 <0.01 0.74 0.063 

10 Strength:Att 12 672 56.13 <0.001 0.10 - - 

11 Site:Exp:Strength 6 336 0.59 0.739 <0.01 0.42 0.594 

12 Site:Exp:Att 2 112 0.32 0.725 <0.01 0.74 0.660 

13 Site:Strength:Att 12 672 1.39 0.164 <0.01 - - 

14 Exp:Strength:Att 12 672 1.32 0.201 <0.01 - - 

15 Site:Exp:Strength:Att 12 672 2.30 0.007 <0.01 - - 

  Experiment 1               

1 Site 1 28 0.77 0.389 0.02 - - 

2 Strength 6 168 243.16 <0.001 0.60 0.38 <0.001 

3 Att 2 56 186.97 <0.001 0.48 0.80 <0.001 

4 Site:Strength 6 168 0.06 0.999 <0.01 0.38 0.956 

5 Site:Att 2 56 0.67 0.517 <0.01 0.80 0.485 

6 Strength:Att 12 336 45.43 <0.001 0.11 0.61 <0.001 

7 Site:Strength:Att 12 336 1.15 0.319 <0.01 0.61 0.333 

  Experiment 3               

1 Site 1 28 0.64 0.431 0.01 - - 

2 Strength 6 168 149.19 <0.001 0.59 0.40 <0.001 

3 Att 2 56 115.62 <0.001 0.33 0.66 <0.001 

4 Site:Strength 6 168 0.74 0.616 <0.01 0.40 0.503 

5 Site:Att 2 56 0.03 0.966 <0.01 0.66 0.910 

6 Strength:Att 12 336 21.49 <0.001 0.10 0.68 <0.001 

7 Site:Strength:Att 12 336 2.14 0.014 0.01 0.68 0.032 
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Supplementary Table 6. Stimulus detection criterion (related to Supplementary Figure 5b). 

  Effect DFn DFd F p 𝜂𝐺
2  𝜀 p[GG] 

  All experiments               

1 Site 1 56 0.22 0.641 <0.01 - - 

2 Exp 1 56 0.53 0.470 <0.01 - - 

3 Strength 6 336 352.02 <0.001 0.38 0.40 <0.001 

4 Att 2 112 11.15 <0.001 0.01 0.63 0.001 

5 Site:Exp 1 56 <0.01 0.987 <0.01 - - 

6 Site:Strength 6 336 2.36 0.030 <0.01 0.40 0.088 

7 Exp:Strength 6 336 24.81 <0.001 0.04 0.40 <0.001 

8 Site:Att 2 112 7.13 0.001 0.01 0.63 0.006 

9 Exp:Att 2 112 9.35 <0.001 0.01 0.63 0.002 

10 Strength:Att 12 672 61.69 <0.001 0.04 0.61 <0.001 

11 Site:Exp:Strength 6 336 2.56 0.019 <0.01 0.40 0.071 

12 Site:Exp:Att 2 112 1.90 0.155 <0.01 0.63 0.171 

13 Site:Strength:Att 12 672 1.19 0.288 <0.01 0.61 0.308 

14 Exp:Strength:Att 12 672 2.05 0.018 <0.01 0.61 0.036 

15 Site:Exp:Strength:Att 12 672 0.90 0.550 <0.01 0.61 0.523 

  Experiment 1               

1 Site 1 28 0.09 0.773 <0.01 - - 

2 Strength 6 168 243.16 <0.001 0.27 0.38 <0.001 

3 Att 2 56 15.00 <0.001 0.04 0.64 <0.001 

4 Site:Strength 6 168 0.06 0.999 <0.01 0.38 0.956 

5 Site:Att 2 56 6.84 0.002 0.02 0.64 0.008 

6 Strength:Att 12 336 45.43 <0.001 0.03 0.61 <0.001 

7 Site:Strength:Att 12 336 1.15 0.319 <0.01 0.61 0.333 

  Experiment 3               

1 Site 1 28 0.15 0.703 <0.01 - - 

2 Strength 6 168 171.11 <0.001 0.51 0.37 <0.001 

3 Att 2 56 3.18 0.049 <0.01 0.61 0.076 

4 Site:Strength 6 168 3.22 0.005 0.02 0.37 0.041 

5 Site:Att 2 56 1.05 0.357 <0.01 0.61 0.328 

6 Strength:Att 12 336 26.73 <0.001 0.06 0.48 <0.001 

7 Site:Strength:Att 12 336 1.00 0.448 <0.01 0.48 0.425 
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Supplementary Table 7. Feature detection sensitivity (related to Supplementary Figure 5a). 

  Effect DFn DFd F p 𝜂𝐺
2  𝜀 p[GG] 

  All experiments               

1 Site 1 56 <0.01 0.950 <0.01 - - 

2 Exp 1 56 1.81 0.184 0.01 - - 

3 Strength 6 336 397.97 <0.001 0.64 0.37 <0.001 

4 Att 2 112 248.90 <0.001 0.44 0.72 <0.001 

5 Site:Exp 1 56 <0.01 0.983 <0.01 - - 

6 Site:Strength 6 336 0.18 0.982 <0.01 0.37 0.856 

7 Exp:Strength 6 336 6.77 <0.001 0.03 0.37 0.001 

8 Site:Att 2 112 0.48 0.618 <0.01 0.72 0.556 

9 Exp:Att 2 112 5.70 0.004 0.02 0.72 0.010 

10 Strength:Att 12 672 47.89 <0.001 0.10 0.74 <0.001 

11 Site:Exp:Strength 6 336 1.92 0.077 <0.01 0.37 0.146 

12 Site:Exp:Att 2 112 1.93 0.150 <0.01 0.72 0.163 

13 Site:Strength:Att 12 672 1.97 0.025 <0.01 0.74 0.042 

14 Exp:Strength:Att 12 672 1.39 0.165 <0.01 0.74 0.190 

15 Site:Exp:Strength:Att 12 672 1.91 0.031 <0.01 0.74 0.049 

  Experiment 1               

1 Site 1 28 <0.01 0.976 <0.01 - - 

2 Strength 6 168 264.35 <0.001 0.64 0.31 <0.001 

3 Att 2 56 146.49 <0.001 0.54 0.77 <0.001 

4 Site:Strength 6 168 2.35 0.033 0.02 0.31 0.109 

5 Site:Att 2 56 1.74 0.185 0.01 0.77 0.193 

6 Strength:Att 12 336 35.14 <0.001 0.12 0.55 <0.001 

7 Site:Strength:Att 12 336 0.93 0.522 <0.01 0.56 0.485 

  Experiment 3               

1 Site 1 28 <0.01 0.954 <0.01 - - 

2 Strength 6 168 172.17 <0.001 0.64 0.39 <0.001 

3 Att 2 56 102.73 <0.001 0.33 0.65 <0.001 

4 Site:Strength 6 168 0.42 0.867 <0.01 0.39 0.693 

5 Site:Att 2 56 0.53 0.594 <0.01 0.65 0.520 

6 Strength:Att 12 336 19.06 <0.001 0.09 0.70 <0.001 

7 Site:Strength:Att 12 336 2.48 0.004 0.01 0.70 0.012 
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Supplementary Table 8. Feature detection criterion (related to Supplementary Figure 5b). 

  Effect DFn DFd F p 𝜂𝐺
2  𝜀 p[GG] 

  All experiments               

1 Site 1 56 0.02 0.899 <0.01 - - 

2 Exp 1 56 0.67 0.417 0.01 - - 

3 Strength 6 336 401.02 <0.001 0.40 0.42 <0.001 

4 Att 2 112 11.86 <0.001 0.01 0.84 <0.001 

5 Site:Exp 1 56 1.12 0.294 0.02 - - 

6 Site:Strength 6 336 0.97 0.447 <0.01 0.42 0.398 

7 Exp:Strength 6 336 12.95 <0.001 0.02 0.42 <00.001 

8 Site:Att 2 112 1.82 0.167 <0.01 0.84 0.174 

9 Exp:Att 2 112 5.21 0.007 <0.01 0.84 0.010 

10 Strength:Att 12 672 58.27 <0.001 0.04 0.65 <0.001 

11 Site:Exp:Strength 6 336 3.41 0.003 <0.01 0.42 0.026 

12 Site:Exp:Att 2 112 0.05 0.948 <0.01 0.84 0.924 

13 Site:Strength:Att 12 672 1.05 0.403 <0.01 0.65 0.399 

14 Exp:Strength:Att 12 672 1.49 0.121 <0.01 0.65 0.159 

15 Site:Exp:Strength:Att 12 672 2.02 0.020 <0.01 0.65 0.044 

  Experiment 1               

1 Site 1 28 0.64 0.429 0.02 - - 

2 Strength 6 168 264.35 <0.001 0.33 0.31 <0.001 

3 Att 2 56 6.76 0.002 0.02 0.83 0.004 

4 Site:Strength 6 168 2.35 0.033 <0.01 0.31 0.109 

5 Site:Att 2 56 0.54 0.588 <0.01 0.83 0.556 

6 Strength:Att 12 336 35.14 <0.001 0.04 0.56 <0.001 

7 Site:Strength:Att 12 336 0.93 0.522 <0.01 0.56 0.485 

  Experiment 3               

1 Site 1 28 0.48 0.495 0.01 - - 

2 Strength 6 168 183.35 <0.001 0.47 0.43 <0.001 

3 Att 2 56 13.61 <0.001 0.01 - - 

4 Site:Strength 6 168 2.12 0.053 0.01 0.43 0.113 

5 Site:Att 2 56 2.08 0.135 <0.01 - - 

6 Strength:Att 12 336 27.09 <0.001 0.05 - - 

7 Site:Strength:Att 12 336 1.86 0.038 <0.01 - - 
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Supplementary Table 9. Unequal variance stimulus detection sensitivity (related to Supplementary 

Figure 6a). 

  Effect DFn DFd F p 𝜂𝐺
2  𝜀 p[GG] 

  All experiments               

1 Site 1 56 2.76 0.102 0.02 - - 

2 Exp 1 56 5.50 0.023 0.04 - - 

3 Strength 6 336 209.87 <0.001 0.50 0.44 <0.001 

4 Att 2 112 201.24 <0.001 0.36 0.82 <0.001 

5 Site:Exp 1 56 0.27 0.603 <0.01 - - 

6 Site:Strength 6 336 0.49 0.818 <0.01 0.44 0.667 

7 Exp:Strength 6 336 7.29 <0.001 0.03 0.44 <0.001 

8 Site:Att 2 112 2.38 0.098 <0.01 0.82 0.109 

9 Exp:Att 2 112 4.53 0.013 0.01 0.82 0.019 

10 Strength:Att 12 672 23.79 <0.001 0.08 0.75 <0.001 

11 Site:Exp:Strength 6 336 0.29 0.941 <0.01 0.44 0.806 

12 Site:Exp:Att 2 112 1.24 0.292 <0.01 0.82 0.288 

13 Site:Strength:Att 12 672 1.14 0.323 <0.01 0.75 0.332 

14 Exp:Strength:Att 12 672 1.35 0.185 <0.01 0.75 0.208 

15 Site:Exp:Strength:Att 12 672 1.58 0.094 <0.01 0.75 0.120 

  Experiment 1               

1 Site 1 28 2.76 0.108 0.03 - - 

2 Strength 6 168 106.35 <0.001 0.49 0.43 <0.001 

3 Att 2 56 107.61 <0.001 0.44 0.82 <0.001 

4 Site:Strength 6 168 0.25 0.957 <0.01 0.43 0.831 

5 Site:Att 2 56 2.84 0.07 0.02 0.82 0.079 

6 Strength:Att 12 336 14.21 <0.001 0.09 0.50 <0.001 

7 Site:Strength:Att 12 336 0.69 0.765 <0.01 050 0.660 

  Experiment 3               

1 Site 1 28 0.57 0.456 <0.01 - - 

2 Strength 6 168 110.36 <0.001 0.52 0.40 <0.001 

3 Att 2 56 95.30 <0.001 0.28 0.80 <0.001 

4 Site:Strength 6 168 0.50 0.811 <0.01 0.40 0.645 

5 Site:Att 2 56 0.15 0.861 <0.01 0.80 0.815 

6 Strength:Att 12 336 11.27 <0.001 0.08 0.72 <0.001 

7 Site:Strength:Att 12 336 1.90 0.034 0.01 0.72 0.056 
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Supplementary Table 10. Unequal variance stimulus detection criterion (related to Supplementary 

Figure 6b). 

  Effect DFn DFd F p 𝜂𝐺
2  𝜀 p[GG] 

  All experiments               

1 Site 1 56 0.30 0.586 <0.01 - - 

2 Exp 1 56 0.42 0.520 <0.01 - - 

3 Strength 6 336 250.30 <0.001 0.38 0.42 <0.001 

4 Att 2 112 4.65 0.012 <0.01 0.70 0.023 

5 Site:Exp 1 56 0.03 0.864 <0.01 - - 

6 Site:Strength 6 336 3.88 0.001 <0.01 0.42 0.016 

7 Exp:Strength 6 336 24.11 <0.001 0.06 0.42 <0.001 

8 Site:Att 2 112 6.20 0.003 0.01 0.70 0.008 

9 Exp:Att 2 112 5.57 0.005 <0.01 0.70 0.012 

10 Strength:Att 12 672 33.19 <0.001 0.04 0.61 <0.001 

11 Site:Exp:Strength 6 336 1.36 0.231 <0.01 0.42 0.261 

12 Site:Exp:Att 2 112 2.08 0.129 <0.01 0.70 0.146 

13 Site:Strength:Att 12 672 1.40 0.162 <0.01 0.61 0.202 

14 Exp:Strength:Att 12 672 2.55 0.003 <0.01 0.61 0.013 

15 Site:Exp:Strength:Att 12 672 1.44 0.143 <0.01 0.51 0.184 

  Experiment 1               

1 Site 1 28 0.24 0.626 <0.01 - - 

2 Strength 6 168 99.71 <0.001 0.25 0.41 <0.001 

3 Att 2 56 6.88 0.002 0.03 0.71 0.006 

4 Site:Strength 6 168 1.43 0.205 <0.01 0.41 0.244 

5 Site:Att 2 56 6.20 0.004 0.02 0.71 0.010 

6 Strength:Att 12 336 11.09 <0.001 0.03 0.43 <0.001 

7 Site:Strength:Att 12 336 1.83 0.043 <0.01 0.43 0.109 

  Experiment 3               

1 Site 1 28 0.08 0.786 <0.01 - - 

2 Strength 6 168 157.43 <0.001 0.50 0.36 <0.001 

3 Att 2 56 2.21 0.120 <0.01 0.68 0.139 

4 Site:Strength 6 168 3.26 0.005 0.02 0.36 0.041 

5 Site:Att 2 56 0.78 0.466 <0.01 0.68 0.421 

6 Strength:Att 12 336 24.84 <0.001 0.06 0.49 <0.001 

7 Site:Strength:Att 12 336 1.00 0.452 <0.01 0.49 0.429 
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Supplementary Table 11. Unequal variance feature detection sensitivity (related to Supplementary 

Figure 6a). 

  Effect DFn DFd F p 𝜂𝐺
2  𝜀 p[GG] 

  All experiments               

1 Site 1 56 0.15 0.703 <0.01 - - 

2 Exp 1 56 1.89 0.174 0.01 - - 

3 Strength 6 336 169.03 <0.001 0.41 0.46 <0.001 

4 Att 2 112 107.66 <0.001 0.26 0.80 <0.001 

5 Site:Exp 1 56 0.12 0.731 <0.01 - - 

6 Site:Strength 6 336 0.25 0.960 <0.01 0.46 0.847 

7 Exp:Strength 6 336 4.51 <0.001 0.02 0.46 0.006 

8 Site:Att 2 112 2.05 0.134 <0.01 0.80 0.144 

9 Exp:Att 2 112 6.66 0.002 0.02 0.80 0.004 

10 Strength:Att 12 672 8.83 <0.001 0.03 0.61 <0.001 

11 Site:Exp:Strength 6 336 0.50 0.812 <0.01 0.46 0.670 

12 Site:Exp:Att 2 112 3.69 0.028 0.01 0.80 0.038 

13 Site:Strength:Att 12 672 1.24 0.248 <0.01 0.61 0.275 

14 Exp:Strength:Att 12 672 1.25 0.245 <0.01 0.61 0.272 

15 Site:Exp:Strength:Att 12 672 1.15 0.316 <0.01 0.61 0.330 

  Experiment 1               

1 Site 1 28 <0.01 0.981 <0.01 - - 

2 Strength 6 168 75.51 <0.001 0.33 0.43 <0.001 

3 Att 2 56 57.77 <0.001 0.34 0.80 <0.001 

4 Site:Strength 6 168 0.29 0.939 <0.01 0.43 0.798 

5 Site:Att 2 56 3.90 0.026 0.03 0.80 0.036 

6 Strength:Att 12 336 6.27 <0.001 0.04 0.48 <0.001 

7 Site:Strength:Att 12 336 0.84 0.610 <0.01 0.48 0.536 

  Experiment 3               

1 Site 1 28 0.31 0.584 <0.01 - - 

2 Strength 6 168 94.67 <0.001 0.49 0.44 <0.001 

3 Att 2 56 55.57 <0.001 0.17 0.80 <0.001 

4 Site:Strength 6 168 0.43 0.862 <0.01 0.44 0.712 

5 Site:Att 2 56 0.22 0.807 <0.01 0.80 0.758 

6 Strength:Att 12 336 4.19 <0.001 0.04 0.59 <0.001 

7 Site:Strength:Att 12 336 1.45 0.144 0.01 0.59 0.188 
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Supplementary Table 12. Unequal variance feature detection criterion (related to Supplementary 

Figure 6b). 

  Effect DFn DFd F p 𝜂𝐺
2  𝜀 p[GG] 

  All experiments               

1 Site 1 56 <0.01 0.973 <0.01 - - 

2 Exp 1 56 0.38 0.539 <0.01 - - 

3 Strength 6 336 322.36 <0.001 0.40 0.47 <0.001 

4 Att 2 112 3.42 0.036 <0.01 0.84 0.045 

5 Site:Exp 1 56 0.63 0.430 <0.01 - - 

6 Site:Strength 6 336 0.98 0.441 <0.01 0.47 0.402 

7 Exp:Strength 6 336 13.90 <0.001 0.03 0.47 <0.001 

8 Site:Att 2 112 0.30 0.741 <0.01 0.84 0.702 

9 Exp:Att 2 112 3.65 0.029 <0.01 0.84 0.037 

10 Strength:Att 12 672 29.21 <0.001 0.05 0.65 <0.001 

11 Site:Exp:Strength 6 336 2.04 0.059 <0.01 0.47 0.114 

12 Site:Exp:Att 2 112 0.53 0.588 <0.01 0.84 0.557 

13 Site:Strength:Att 12 672 0.82 0.633 <0.01 0.65 0.584 

14 Exp:Strength:Att 12 672 2.20 0.010 <0.01 0.65 0.028 

15 Site:Exp:Strength:Att 12 672 1.45 0.139 <0.01 0.65 0.177 

  Experiment 1               

1 Site 1 28 0.28 0.598 <0.01 - - 

2 Strength 6 168 175.96 <0.001 0.32 0.43 <0.001 

3 Att 2 56 1.88 0.162 <0.01 0.84 0.170 

4 Site:Strength 6 168 0.89 0.504 <0.01 0.43 0.437 

5 Site:Att 2 56 0.03 0.972 <0.01 0.84 0.954 

6 Strength:Att 12 336 11.90 <0.001 0.03 0.41 <0.001 

7 Site:Strength:Att 12 336 0.42 0.957 <0.01 0.41 0.834 

  Experiment 3               

1 Site 1 28 0.35 0.559 <0.01 - - 

2 Strength 6 168 164.18 <0.001 0.48 0.46 <0.001 

3 Att 2 56 10.31 <0.001 0.01 - - 

4 Site:Strength 6 168 1.82 0.097 0.01 0.46 0.154 

5 Site:Att 2 56 2.01 0.144 <0.01 - - 

6 Strength:Att 12 336 18.81 <0.001 0.07 0.56 <0.001 

7 Site:Strength:Att 12 336 1.72 0.062 <0.01 0.56 0.110 
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Supplementary Table 13. AUC of stimulus visibility (related to Figure 2d and Figure 5 top row). 

    Effect DFn DFd F p 𝜂𝐺
2   𝜀 p[GG] 

All experiments 1 Site 1 111 0.26 0.613 <0.01 - - 

  2 Exp 3 111 67.57 <0.001 0.61 - - 

  3 Att 2 222 117.24 <0.001 0.14 0.91 <0.001 

  4 Site:Exp 3 111 3.52 0.017 0.08 - - 

  5 Site:Att 2 222 0.81 0.447 <0.01 0.91 0.436 

  6 Exp:Att 6 222 1.75 0.110 <0.01 0.91 0.118 

  7 Site:Exp:Att 6 222 1.46 0.193 <0.01 0.91 0.200 

Experiment 1 1 Site 1 28 4.79 0.037 0.14 - - 

  2 Att 2 56 36.06 <0.001 0.10 0.77 <0.001 

  3 Site:Att 2 56 3.03 0.056 0.01 0.77 0.071 

Experiment 2 1 Site 1 28 0.04 0.840 <0.01 - - 

  2 Att 2 56 49.41 <0.001 0.42 0.61 <0.001 

  3 Site:Att 2 56 0.50 0.608 <0.01 0.61 0.52 

Experiment 3 1 Site 1 28 1.77 0.194 0.05 - - 

  2 Att 2 56 15.84 <0.001 0.06 - - 

  3 Site:Att 2 56 1.03 0.362 <0.01 - - 

Experiment 4 1 Site 1 27 0.34 0.568 <0.01 - - 

  2 Att 2 54 39.80 <0.001 0.37 - - 

  3 Site:Att 2 54 0.84 0.438 0.01 - - 

  

  

Supplementary Table 14. AUC of feature visibility (related to Figure 3d and Figure 5 bottom row). 

    Effect DFn DFd F p 𝜂𝐺
2   𝜀 p[GG] 

All experiments 1 Site 1 84 0.42 0.520 <0.01 - - 

  2 Exp 2 84 7.26 <0.001 0.13 - - 

  3 Att 2 168 6.54 0.002 <0.01 0.78 0.004 

  4 Site:Exp 3 84 1.80 0.172 0.04 - - 

  5 Site:Att 2 168 0.32 0.728 <0.01 0.78 0.674 

  6 Exp:Att 4 168 7.67 <0.001 0.02 0.78 <0.001 

  7 Site:Exp:Att 4 168 1.58 0.183 <0.01 0.78 0.196 

Experiment 1 1 Site 1 28 2.01 0.168 0.05 - - 

  2 Att 2 56 14.63 <0.001 0.09 0.62 <0.001 

  3 Site:Att 2 56 1.18 0.314 <0.01 0.62 0.297 

Experiment 2 1 Site 1 28 1.27 0.269 0.04 - - 

  2 Att 2 56 2.22 0.118 <0.01 0.64 0.140 

  3 Site:Att 2 56 1.48 0.238 <0.01 0.64 0.239 

Experiment 3 1 Site 1 28 1.14 0.294 0.04 - - 

  2 Att 2 56 5.27 0.008 0.02 0.89 0.011 

  3 Site:Att 2 56 0.72 0.492 <0.01 0.89 0.477 
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Supplementary Table 15. AMI (related to Figure 6). 

    Effect DFn DFd F p 𝜂𝐺
2  

Stimulus-level 1 Site 1 110 0.064 0.800 <0.01 

  2 Strength regime 1 110 197.65 <0.001 0.64 

  3 Stimulus type 1 110 3.58 0.061 0.03 

  4 Site:Strength regime 1 110 <0.01 0.963 <0.01 

  5 Site:Stimulus type 1 110 0.03 0.876 <0.01 

  6 Strength regime:Stimulus type 1 110 0.15 0.697 <0.01 

  7 Site:Strength regime:Stimulus type 1 110 1.41 0.238 0.01 

Feature-level 1 Site 1 84 0.55 0.459 <0.01 

  2 Exp 2 84 20.43 <0.001 0.33 

  3 Site:Exp 2 84 0.73 0.485 0.02 

 

 

 

Supplementary Table 16. AMI by analytic pipeline (related to Supplementary Figure 8). 

    Effect DFn DFd F p 𝜂𝐺
2  

Stimulus-level 1 Site 1 220 0.74 0.390 <0.01 

  2 Exp 3 220 130.23 <0.001 0.64 

  3 Pipe 1 220 0.02 0.895 <0.01 

  4 Site:Exp 3 220 0.75 0.525 <0.01 

  5 Site:Pipe 1 220 0.26 0.613 <0.01 

  6 Exp:Pipe 3 220 0.15 0.931 <0.01 

  7 Site:Exp:Pipe 3 220 0.07 0.976 <0.01 

Feature-level 1 Site 1 168 2.15 0.145 0.01 

  2 Exp 2 168 45.11 <0.001 0.35 

  3 Pipe 1 168 0.20 0.657 <0.01 

  4 Site:Exp 2 168 2.13 0.122 0.03 

  5 Site:Pipe 1 168 0.14 0.706 <0.01 

  6 Exp:Pipe 2 168 0.09 0.911 <0.01 

  7 Site:Exp:Pipe 2 168 0.06 0.943 <0.01 

 

 
 

 
Supplementary Table 17. Thresholds. 

    Effect DFn DFd F p 𝜼𝑮
𝟐   

All experiments 1 Site 1 112 0.22 0.637 <0.01 

  2 Exp 3 112 36.31 <0.001 0.49 

  3 Site:Exp 3 112 2.53 0.061 0.06 

Experiment 1 1 Site 1 28 0.10 0.752 <0.01 

Experiment 2 1 Site 1 28 1.51 0.229 0.05 

Experiment 3 1 Site 1 28 2.26 0.144 0.08 

Experiment 4 1 Site 1 28 1.84 0.185 0.06 
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